
UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 i

UNIXPower Tools
Overview

AM Shell 1 UNIX and the Shell

Commands 1 Listing Information

Commands 2 Creating and Destroying

Shell 2 Command I/O

Commands 3 Splitting and Joining

Shell 3 Linking Commands

Shell 4 Variables and Quoting

Lunch

PM Commands 4 Looking Inside

Shell 5 Scripts and Arguments

Commands 5 Numbers and Values

Shell 6 Control Structures

Commands 6 Scriptable Programs

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 ii

UNIXPower Tools
Reading

• The Unix V Environment,
Stephen R. Bourne,
Wiley, 1987, ISBN 0 201 18484 2
The author of the Borne Shell! A 'classic' which deals not only with
the shell, but also other aspects of UNIX.

• Unix Shell Programming (3rd Ed.),
Lowel Jay Arthur & Ted Burns,
Addison-Wesley, 1994, ISBN 0 471 59941 7
Covers Bourne, C and Korn shells in detail.

• UNIX manual pages:
man sh etc.

Most commands are in section 1 of the manual. The shell is usually
well covered, but you need to read the awk documentation (perhaps
in troff form in /usr/doc) as well as the manual entry.

Shell 1

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIX and
the Shell

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 1

UNIXPower Tools
Shell 1

UNIX and the Shell

• the nature of UNIX

• what is the Shell?

• shell programming

• shell commands

• UNIX file system

• wildcards for file names

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 2

UNIX

UNIX is an operating system

file store programsnetworks etc.

UNIX

It manages:
• files and data
• running programs
• networks and other resources

It is also:
• a collection of programs and utilities
• glued together by the shell

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 3

Shell

What is the shell?
• just a user interface for UNIX
• a rather poor user interface !
• a powerful user environment
• a flexible programming environment

shell

file store programsnetworks etc.

UNIX

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 4

Windows vs. the Shell

MS Windows or Mac/OS
supports

• exploratory actions
• with immediate feedback
• on single objects

Shell
supports

• planned actions
• with feedback on request
• on multiple objects

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 5

Different Shells

Bourne Shell
• also known as '/bin/sh' (where it is on most systems)

• available on all systems (so good for scripts)
• used throughout the course

C Shell
• more C like syntax
• process control
• command history for repeating past commands
• aliases for commands

Korn Shell
• incorporates features of both
• better handling of integers

Various graphical window front-ends
• usually only support limited functionality
• for complex actions have terminal windows . . .

. . . and a shell

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 6

Shell as a programming language

programming language manages:
• data:

❍ integers
❍ character strings
❍ records

• control flow:
❍ choice – if-then-else
❍ loops of repeated actions

• procedures:
❍ packages frequent actions together

UNIX shell:
• data:

❍ environment variables (character strings)
❍ whole files

• control flow:
❍ similar + special features

• procedures:
❍ shell scripts

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 7

Shell “commands”

• some built into the shell

• some separate programs

Typical command:
command options filename1 filename2 ...

options either: -abc
or: -a -b -c

e.g. ls -rlt jane
cat fred tom
od -c tom

N.B. ① not all commands like this
② different versions of UNIX

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 8

UNIX file system

• organised as hierarchy

cat
cat

wc
wc

...

bin/

/

...

usr/

lib/

ctype.hstdio.h ...

include/

...

...

home/

......

staff2/

tomfred ...

alan/

• other disks linked into hierarchy

all contents in same name space as other each other
(c.f. DOS A:, B: etc.)

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 9

Wildcards

• Shorthand to save typing!

• Refer to several files with similar names

File name contains one or more special characters:
? – any single character
* – any sequence of characters (poss. empty)
[abxy] – a single character from ‘abxy’
[h-m] – any character between ‘h’ and ‘m’

Directory:

fred.doc fred3.doc fred5.doc tom.c
fred2.c fred4.dat harry.dat tom.doc
fred2.dat fred4.doc harry5.doc

Examples:
*.doc – fred.doc fred3.doc fred4.doc fred5.doc

harry5.doc, tom.doc

fred?.doc – fred3.doc fred4.doc fred5.doc

[ht]* – harry.doc, harry5.doc, tom.c, tom.dat

*5.doc – fred5.doc harry5.doc

(N.B. different in DOS!!!)

Commands 1

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

Listing
Information

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 10

UNIXPower Tools
Commands 1

Listing Information

• fixed text
echo

• text files
cat
cat -n
more

• non-text files
cat -v
od

• directories
ls

• internal UNIX information
ps
lpq

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 11

echo

echo {-n} text

• print fixed text

$ echo hello
hello
$

• -n option - no new line after

$ echo -n hello
hello$

• to try things out

$ echo *5.doc
fred5.doc harry5.doc
$

• or print messages from 'scripts'

echo "sending output to $PRINTER"

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 12

text files

cat file1 file2 file3
– prints out the files to the terminal

$ cat fred
this is the contents
of the file called fred
$

cat -n file
– prints out the file with line numbers

$ cat -n fred
1 this is the contents
2 of the file called fred
$

more file
– prints the file screen by screen

you type: return key – for another line
space – for the next screen full

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 13

non-text files

files with non-printable characters
e.g. program data files

files copied from DOS or Mac platforms
(different end of line mark, accented characters etc.)

cat -v file
– not all version of UNIX!

uses \ sequences for special characters

$ cat -v my-dos-file
This is a PC file. DOS ends lines with\r
carriage return line feed, not just\r
line feed\r
$

od file
– prints out the file in octal (base 8)

options:
od -x file – hexadecimal instead of octal
od -c file – where possible uses ordinary chars

$ od -c small-pc-file
0000 L i n e 1 \r \n L
0008 i n e 2 \r \n
$

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 14

directories

ls
– list files in the current directory

ls dir
– list particular directory

ls -l
– long listing (size, dates etc.)

ls -l file
– details of single file

ls file1 file2 dir1 dir2 file3
– lists all the given files and directories

ls -rlt *.c
– list details of all files ending in '.c'

in reverse time order

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 15

the guts

ps
– list your running programs (processes)

ps uax
– list all running programs

lpq
– list files waiting to be printed

lpq -Psparc
– list files waiting to be printed on the

printer called 'sparc'
N.B. options for lpq very system specific

++ PLUS ++
lots of other system administration information !!!

Creating and
Destroying

Commands 2

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 16

UNIXPower Tools
Commands 2
Creating and Destroying

Files • creation
>newfile
cat >newfile

• deletion
rm

Directories
• creation

mkdir

• deletion
rmdir
rm -rf

Duplicating files
cp
ln
ln -s

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 17

Files

• file creation
❍ created as the result of many commands
❍ quick ways – to make an empty file:

$ >newfile
$

❍ type it in from the keyboard
(end file with control-D – echoed as '̂ D')

$ cat >newfile
text for the new file
D̂
$

❍ or use 'cat >>file' to add to the end of a file

• file deletion

rm file1 file2 file3
❍ 'rm -i' option prompts for confirmation
❍ be very careful with wildcards!

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 18

Directories

• creation

mkdir newname
❍ creates a new sub-directory of the current

directory called 'newname'

• deletion

rmdir oldname
❍ deletes the directory called 'oldname'
❍ will only remove empty directories

to protect you

rm -rf old-dir

❍ special options for rm
❍ removes old-dir and all enclosing directories

and files!!!
N.B. 'rm -rf *' – the UNIX nightmare

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 19

Duplicating

• UNIX filenames are pointers to the file
• there may be more than one pointer

cp tom fred
❍ duplicates the file pointed to by tom

fred points to the new copy
fred tom

ln tom fred
❍ fred points to the same file as tom

tomfred

ln -s tom fred
❍ fred points to the name 'tom' – an alias

tomfred

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 20

Links and updates

cp fred tom ln fred tom ln -s fred tom

fred tom tomfred tomfred

• update file tom

fred tom tomfred tomfred

• delete file tom (rm tom)

fred tom tomfred tomfred

• what is in fred?

fred fred ?fred

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 21

☞ ☞ ☞ ☞ Hands on ✍ ✍ ✍ ✍

☞ go to the directory 'tools/many-files'
$ cd tools/many-files

experiment with wildcards, e.g.:
$ echo [a-m]*.???

☞ go back to your home directory
$ cd

☞ create a file 'tom' using 'cat'
$ cat >tom

remember control-D to finish

☞ link fred to tom
$ ln tom fred

☞ print out fred and tom using 'cat'
$ cat tom
$ cat fred

☞ update tom using 'cat >> tom'
print out fred and tom again using 'cat'

☞ delete tom using 'rm tom'
print out fred – what happens

☞ repeat using 'cp tom fred' and 'ln -s tom fred'
N.B. you will have to 'rm fred' each time

before starting

☞ try 'ln -s fred fred'
what happens when you do 'cat fred'

Shell 2

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

Command I/O

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 22

UNIXPower Tools
Shell 2

Command I/O

• programs and processes
❍ the nature of shell commands

• input and output
❍ standard input
❍ standard output
❍ standard error

• redirection
❍ sending input and output to files

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 23

Programs and processes

Processes

• UNIX can run many programs at the same time

• Also many copies of the same program
(c.f. Windows and Mac)

• strictly UNIX runs many processes
each of which executes the code of a program

The Shell

• the shell is just a program

• possibly different kinds of shell for different users

• often more than one copy of the shell for each user

Commands

• UNIX is profligate with processes!

• created and destroyed all the time

• one for most commands executed

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 24

Input and Output

Each running program has numbered input/outputs:

0 – standard input
• often used as input if no file is given
• default input from the user terminal

1 – standard output
• simple program's output goes here
• default output to the user terminal

2 – standard error
• error messages from user
• default output to the user terminal

Other numbers are rarely used from the shell

0 1

2

input output

errors

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 25

Redirection

Default input/output is user's terminal

Redirection to or from files:

❍ command <fred
– standard input from file 'fred'

0 1

2

output

errors

'fred'

❍ command >harry
– standard output goes to file 'harry'

0 1
2

input

errors

'harry'

– file is created if it doesn't exist
N.B. C shell prevents overwriting

❍ command >>harry
– similar, but appends to end of 'harry'

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 26

Redirection of standard error

❍ command 2>errlog
– standard error goes to file 'errlog'

0 1
2

input output

'errlog'

❍ command 2>>errlog
– standard error appends to end of 'errlog'

❍ command 2>&1
– standard error goes to current

destination of standard output

0 1
2

input output

errors

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 27

How it works ...

Quick file creation
cat >fred

• no files given – so cat reads standard input
• standard input defaults to user terminal
• cat copies to standard output . . .

. . . which goes to the file fred

⇒ the users typing goes into fred

Empty file creation
>fred

• standard output goes to fred
• if it doesn't exist it is created
• no command given – the empty command
• the empty command generates no output
⇒ the file is empty

Splitting and
Joining

Commands 3

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 28

UNIXPower Tools
Commands 3

Splitting and Joining

Commands which break files apart . . .
. . . and ones to put them together again!

Horizontal
• splitting

head
tail

• joining
cat

Vertical

• splitting
cut

• joining
paste

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 29

Horizontal split and join

Splitting
head -20 fred

'head -n' – first n lines

tail -50 fred
'tail -n' – last n lines
'tail +n' – from line n onwards

Joining
cat tom dick >harry

(N.B. use of redirection)

tail

head

cat

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 30

Vertical split

cut -c10-20,30-35 fred
'cut -cn-m' – chars n to m of each line

cut -d: -f1,7,8 fred
'cut -fn,m' – fields n, m of each line

(tab delimited)

'cut -dx' – field delimiter is x

cut

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 31

Vertical join

paste tom dick
– corresponding lines concatenated

'paste -dlist tom dick'
– use characters in list as column separators

paste

•
•
•
•
•
•
•
•
•
•
•

Shell 3

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

Linking
Commands

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 32

UNIXPower Tools
Shell 3

Linking Commands

• pipes
❍ linking the output and input

a | b

• filters
❍ commands made for piping

• sequences of commands
a ; b

• conditional sequences
a && b
a || b

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 33

Putting them together – PIPES

Temporary files to build up complex sequences
e.g. the first 10 characters of the first 5 lines of fred

$ head -5 fred >tmpfile
$ cut -c1-10 tmpfile
$ rm tmpfile

• commands run one after the other

UNIX pipes join the standard output of one command
to the standard input of another

$ head -5 fred | cut -c1-10

• commands run at the same time
• standard error from both are mixed together (!)

errors

'fred' output
head -5 col -c1-10

DOS has pipes too . . .
. . . but just a shorthand for hidden temporary files!

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 34

Filters

• Some commands only work on named
files:

e.g. copying – cp from-file to-file

• Many take standard input as default
cat, head, tail, cut, paste, etc.

• These are called filters
– very useful as part of pipes

• Filter pipes may be very long
$ head -50 | cut -c1-10 | tail +40 | more

• Also special filename '–'
e.g. cat header – footer
– this adds the files 'header' and 'footer' to the

beginning and end of the standard input

N.B. not all commands recognise '–'

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 35

More ways to put things together

Several ways to run commands one after the other:

Simple sequence using ';'

$ echo hello; cat fred
hello
this is the contents
of the file called fred
$

Conditional and '&&'
second command only runs if first is successful

$ echo -n hello && echo bye bye
hellobye bye
$

N.B. notice use of '-n' option for echo

Conditional or '||'
second command only runs if first is not successful

$ echo hello || echo bye bye
hello
$

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 36

☞ ☞ ☞ ☞ Hands on ✍ ✍ ✍ ✍

☞ copy the file long-file from the tools directory
$ cp tools/long-file .

☞ construct a command that lists lines 100-105 of it
try first with a temporary file
and then with a single command line

☞ do it again, but with the lines numbered:
① first number them 100, 101, ... 105
② then 1, 2, ... 6

☞ look at the output of ls -l

☞ construct a command line which lists all the files
in the current directory, but is of the form:

date filename

Shell 4

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

Variables and
Quoting

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 37

UNIXPower Tools
Shell 4

Variables and Quoting

• setting variables
name=value

• displaying the environment
set

• using variables
$name
${name-default}

• quoting
"hello $name"
'hello $name'
 `echo hello`

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 38

Environment Variables

• set of name=value mappings
• most created during start-up (.profile, .login etc.)

Setting a variable:
myvar=hello

var2=" a value with spaces needs to be quoted"

export myvar

• no spaces before or after '=' sign
• variables need to be exported to be seen

by other programs run from the shell
• in C shell: "set name=val" and no export

Listing all variables

$ set
HOME=/home/staff2/alan
myvar=hello
PATH=/local/bin:/bin:/local/X/bin
USER=alan
 . . .
$

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 39

Using Variables

• variables referred to by: $name

$ echo $myvar
hello
$ echo $var2
a value with spaces needs to be quoted
$

• note that resulting value does not have quotes

• to avoid ambiguity can use: ${name}

$ echo a${myvar}bc
ahellobc
$

• without the { } the shell would try to look
for an variable called 'myvarbc'

• various sorts of default:
${name-default} – if name is not set use default
${name=default} – if unset, sets name to default

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 40

Quoting

• shell expands variables and wildcards . . .

$ echo $myvar *5.doc
hello fred5.doc harry5.doc

. . . but not always wanted

• quoting gives you control over expansion

❍ double quotes "$myvar *5.doc"
variables – yes
wildcards – no

$ echo "$myvar *5.doc"
hello *5.doc

❍ single quotes '$myvar *5.doc'
variables – no
wildcards – no

$ echo '$myvar *5.doc'
$myvar *5.doc

❍ backslash \$myvar
protects single characters
also used for special characters

\n, \", \\, etc.

$ echo \$myvar "\\ *5.doc\""
$myvar \ *5.doc"
$

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 41

Back Quotes

• back quotes ècho hellò are very different

• they do not prevent variable or wildcard expansion

• the text in the quotes is:
① interpreted as a command
② executed
③ the output is substituted back

$ cat ̀ echo fred̀
this is the contents
of the file called fred
$

• the command in the quotes may contain:
❍ shell variables ècho $myvar̀
❍ wildcards c̀at *.doc̀
❍ quotes ècho "$myvar"̀
❍ escapes ècho *̀
❍ more backquotes c̀at \̀ echo fred\̀ `

• example use: a file containing a list of file names

$ echo *.doc >my-docs
$ wc ̀ cat my-docs̀

Looking
Inside

Commands 4

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 42

UNIXPower Tools
Commands 4

Looking Inside

Commands which work on file contents

Translating characters
tr list1 list2 file
tr -d list file

Sorting files
sort file1 file2 file3

Word count
wc file

Finding things
fgrep string file1 file2
find dir -name name -print

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 43

Translating characters

tr list1 list2 file
– changes characters from list1

to the corresponding character from list2

$ tr abcdef uvwxyz fred
hyllo
this is thy contynts
oz thy zily cullyd fryd

tr -d list file
– deletes characters from list

$ tr -d 'rst ' fred
hello
hiisheconen
ofhefilecalledfred

some useful translations:
tr -d '\015' – DOS → UNIX conversion

strips carriage returns
(UNIX → DOS is harder!)

tr '\012' '\015' – UNIX → MAC conversion
newline to carriage return

• both using octal character codes

tr '[A-Z]' '[a-z]' – upper to lower case conversion

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 44

Sorting files

sort file1 file2 file3
– sorts lines from the files in ascending order

$ cat a-file
this is the first line
and this is the second
the third is here
four is the last
$ sort a-file
and this is the second
four is the last
the third is here
this is the first line
$

options:
+n numeric order
+r reverse order
+u 'unique', remove duplicate lines
+n -m sort on fields n to m-1 inclusive
-tc use the character c as the field separator

default is any number of spaces or tabs

N.B. conventions different from cut
in particular cut numbers fields from 1
but sort numbers from 0 (!!!)

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 45

Word count

wc file1 file2 file3
– counts the number of characters, words

and lines in each file
– also outputs total for all files

(when more than one)

options:
-c character count only
-w word count only
-l line count only

any combination can be given – default is '-lwc'

Examples

$ ls | wc -l

number of files in the current directory

$ wc -c fred

size of fred in bytes

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 46

Finding things

fgrep string file1 file2
– print all lines in file1 and file2 which contain

the characters string

(some) options:

-l list matching files only
-v find lines not containing the string

N.B. two other variants: grep and egrep

find dir -name fname -print
– list all files named fname in the directory dir

and any subdirectory of dir

options: innumerable!

Examples

$ fgrep -l UNIX *.doc

list all ‘.doc’ files containing the word ‘UNIX’

$ find /usr/home2/alan -name '*urgent*' -print

find all files within ‘/usr/home2/alan’ whose
file name includes ‘urgent’ and print the names

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 47

☞ ☞ ☞ ☞ Hands on ✍ ✍ ✍ ✍

☞ create (using cat >) five files ax, by, cy, dx, ex
make their content and lengths different

☞ set an environment variable weekly
whichfile="by ex"

☞ use it to cat the files
cat $whichfile

☞ what will happen if you quote it?
cat "$whichfile"

☞ try it!

☞ use the variable whichfile to an echo command
which produces the following:

$whichfile="by ex"

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 47a

☞ ☞ ☞ ☞ Hands on (ctd.) ✍ ✍ ✍

❍ imagine you are automating a backup procedure

☞ create two files weekly and monthly

$ cat >weekly
ax
by
cy
D̂
$ echo ?x >monthly
$

☞ use them to list and word count files
ls ̀ cat weeklỳ
wc ̀ cat monthlỳ

☞ create an environment variable whichfiles

$ whichfiles="weekly"

☞ now create a command line which sorts the list
referred to by whichfiles but make it generic.
That is sort ̀ cat weeklỳ will not do!

Shell 5

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

Scripts and
Arguments

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 48

UNIXPower Tools
Shell 5

Scripts and Arguments

• simple scripts
#!/bin/sh
chmod

• grouping commands
(... ; ...)

{ ... ; ... ; }

• exit codes
exit n
$?

• command line arguments
$1, $2, ...

$#, $*, ${@:-"$@"}

• HERE files
cat <<HERE

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 49

Shell Scripts

• if you do the same thing over and over
. . . put it in a shell script

• shell scripts are files:
① starting with:

#!/bin/sh

② containing shell commands
③ made executable by

chmod a+x

• executed using a copy of the shell

$ cat >my-first-script
#!/bin/sh
echo hello world
$ chmod a+x my-first-script
$ my-first-script
hello world
$

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 50

Exit Codes

• as well as output and errors . . .
. . . also an exit code

• an integer: 0 – success
anything else – failure

• examine using $?
– the exit code of the last command

$ cat fred
this is the contents
of the file called fred
$ echo $?
0
$ cat freda
cat: freda: No such file or directory
$ echo $?
1
$

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 51

Setting Exit Codes

• set the exit code of a script with:
exit n

• exits (sub)shell immediately

• logs out if executed at the top-level !

$ cat >script-2
#!/bin/sh
echo exiting now
exit 17
echo this line never gets typed
$ chmod a+x script-2
$ script-2
exiting now
$ echo $?
17
$

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 52

Grouping

• brackets used to group commands

$ (echo hello; echo bye bye) >fred
$ cat fred
hello
bye bye
$

❍ commands run in a sub-shell

• curly brackets similar

$ { echo hello; echo bye bye; } >fred
$ cat fred
hello
bye bye
$

① no sub-shell
② { and } treated as commands

⇒ start of line or after ;

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 53

Scope within Groups

• round brackets give a sub-shell
⇒ commands have local effect:

i.e. exit, variables and cd

• curly brackets in outer-shell
⇒ all commands affect it

$ myvar="bye bye"
$ (myvar=fred; exit 53)
$ echo $? $myvar
53 bye bye
$ { myvar=fred; }
$ echo $myvar
fred
$ { exit 53; }

– system logged out!

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 54

Arguments

• general form of command
command arg1 arg2 ... argn

• each argument may be:
❍ an option: e.g. -x
❍ a file name: e.g. fred
❍ anything else: e.g. "a message"

• within a script arguments are:
$1, $2, $3, ...

• count of arguments in $#
(N.B. C programmers $# ≠ argc)

$ cat >show-args
#!/bin/sh
echo nos=$# 1=$1 2=$2 3=$3 4=$4
$ chmod a+x show-args
$ show-args a b c
nos=3 1=a 2=b 3=c 4=
$

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 55

Quoting Arguments

• spaces separate arguments
$ show-args a bcd e23 -x
nos=4 1=a 2=bcd 3=e23 4=-x

• wildcards expand to separate names
$ show-args *5.doc
nos=2 1=fred5.doc 2=harry5.doc 3= 4=

• spaces in variables make several args
$ longvar="a b c d"
$ show-args $longvar
nos=4 1=a 2=b 3=c 4=d

• quotes create a single argument
$ show-args a "b c" d
nos=3 1=a 2=b c 3=d 4=

• but back quotes don't !
$ show-args ̀ echo a b̀
nos=2 1=a 2=b 3= 4=

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 56

Passing Them On

• sometimes want to pass arguments on
to another command

$ cat >list
#!/bin/sh
echo listing of file
cat $1 $2 $3

but how many arguments to pass?

• can get whole list:
$* – the whole list (unquoted)
$@ – similar except . . .
"$*" – the whole list as one argument
"$@" – the whole list properly quoted
${@+"$@"} – safest for older shells

• use shift to remove first argument
$ cat >mess-wc
#!/bin/sh
echo message is $1
shift
wc $* # doesn't count first argument

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 57

HERE files

• to give constant text to a command

❍ single line – use echo and pipe
$ echo hello | cat >fred

❍ lots of lines – use HERE file
$ wc <<HERE
> this is two lines
> of text
> HERE
 2 6 26
$

N.B. secondary prompt "> "

• you can use any terminator,
not just HERE!

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 58

HERE file substitution

• variables are expanded in HERE files
$ myvar=fred
$ cat <<HERE
> Dear $myvar how are you?
> HERE
Dear fred how are you?
$

• prevent expansion with quotes
$ cat <<"HERE"
> Dear $myvar how are you?
> HERE
Dear $myvar how are you?
$

. . . or backslash
$ cat <<HERE
> Dear $myvar try typing \$myvar with a \\
> HERE
Dear fred try typing $myvar with a \
$

• wildcards never expanded

Numbers and
Values

Commands 5

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 59

UNIXPower Tools
Commands 5

Numbers and Values

• evaluating expressions
expr

• testing conditions
test
[...]

• running commands
eval

• doing something else
. command
exec

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 60

Evaluating Expressions

• we can set and use variables . . .
. . . how do we calculate with them?

expr expression

• expr is a program, it
❍ evaluates the expression
❍ sends the result to standard output

$ expr 1 + 2
3

• each item must be separate

$ expr 1+ 2
expr: syntax error

• beware of null values!

$ expr $undefinedVar + 2 # expands to expr + 2
expr: syntax error

• use with backquotes in scripts

mycount=̀ expr $mycount + 1̀

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 61

Testing Conditions

• expr can evaluates logical conditions
$ expr 2 ">" 1 \& 3 \> 2 # & means and
1 # 1 means true

❍ operators need to be quoted or escaped
❍ result to standard output

• test also evaluates logical conditons
$ test 2 -gt 1 -a 3 -gt 2 # -a means and
$ echo $?
0 # 0 means true !!!

❍ different syntax
❍ returns result in exit code
❍ zero exit code is success – true!

• shorthand using [...]
$ [1 = 2]
$ echo $?
1 # false

❍ needs spaces like curly brackets

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 62

Running Commands

• you may want to execute a command
which is in a variable:

$ mycommand="echo hello"
$ $mycommand
hello

• but doesn't work for setting variables
$ setcommand="var=newval"
$ $setcommand
var=newval: not found
$

. . . or pipes, etc.
$ pipecommand="echo hello | cat"
$ $pipecommand
hello | cat
$

• eval does it right!
$ eval $setcommand
$ echo $var
newval
$ eval $pipecommand
hello

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 63

Doing Something Else

• normally commands run in a sub-shell

• you can control this:

• dot makes scripts run in the main shell
$. .profile

❍ used for setting variables in login scripts

• exec makes command replace the shell
$ (echo first line
> exec echo hello
> echo last line never executed)
first line
hello
$

❍ note use of brackets to force sub-shell

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 64

☞ ☞ ☞ ☞ Hands on ✍ ✍ ✍ ✍

☞ experiment with (exit n) followed by echo $?

☞ enter the script show-args on the slide "Arguments"

☞ experiment with different quoted arguments to it

☞ create a file pass-on

show-args $*
echo now quoted *
show-args "$*"
echo now @
show-args $@
echo quoted @
show-args "$@"
echo now magic
show-args ${@+"$@"}

☞ try the following

$ pass-on a "b c" d
$ pass-on a "" d
$ pass-on ""
$ pass-on

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 65

☞ ☞ ☞ ☞ Hands on (ctd.) ✍ ✍ ✍

☞ the first script I create on any platform is:

$ cat >chx
chmod a+x $*
$ chmod a+x chx

☞ type it in and check you understand what it does

☞ you may find UNIX cannot find your new script
if this happens try changing your PATH environment
variable (which tells UNIX where to look for
commands) to include the current directory:

$ PATH=.:$PATH

☞ write a script called lines which behaves as follows:

$ lines 150 180 long-file

this should list lines 150 to 180 (inclusive) of the file
called long-file with line numbers (150, 151 etc.)

☞ use chx to make lines executable

☞ not simply an exercise – this is exactly the script I
wrote recently to help me with C compiler error
messages.
useful scripts don't have to be long ones!

Shell 6

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

Control
Structures

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 66

UNIXPower Tools
Shell 6

Control Structures

• testing conditions
if . . . then . . . else . . . fi

case . . . in . . . esac

• looping
for . . . do . . . done

while . . . do . . . done

until . . . do . . . done

• catching signals
trap

• functions
name() { . . . }

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 67

Testing Conditions

• shell has an 'if' statement

if [$# -lt 2]
then
 echo not enough arguments
else
 cp $1 $2
fi

❍ the 'condition' part is a command
❍ typically test, but not always

• also 'case' statement

case $1 in
 -e) echo $2 ;;
 -c) cat $2 ;;
 *) echo bad first argument $1 ;;
esac

❍ the patterns (before bracket) like wildcards
⇒ *) acts as default

❍ fallthrough without double semicolon ;;

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 68

Looping – for

• for does the same thing to several values

$ for i in 1 2 3
> do
> echo -n " abc$i"
> done
 abc1 abc2 abc3
$

• useful for iterating over files

for i in *.doc

• can be used for iterating through arguments

for i in $*

special form handles quoting correctly

for i
do
 echo "listing of $i"
 cat $i
done

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 69

Looping – while and until

• while and until loops based on a condition

myct=1
while [$myct -lt 10000]
do
 echo this is line $myct
 myct=̀ expr $myct + 1̀
done

• some special commands for tests

: – always returns exit code 0
true – always returns exit code 0
false – always returns exit code 1

echo for ever
while :
do
 echo and ever
done

• :, true and false all ignore their arguments

⇒ : can be used for comments . . .

. . . but # is better

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 70

Catching Signals

• UNIX signals caused by:
❍ errors e.g. arithmetic overflow
❍ user interrupts (ctrl-C)

(see man signal for full list)

• signals force the script to exit

• may be untidy (e.g. temporary files)

• trap allows tidy up
tmpfile=/tmp/myprog$$
trap "rm $tmpfile" 0 1 2 3 15
 . . . more commands which use tmpfile . . .

• note:
❍ signal 0 means normal shell exit

(see man signal for full list)
❍ use of $$ - the process id to invent unique

temporary file names

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 71

Functions

• also can define 'functions' in scripts

f() {
 myvar=$1
}

• used like normal command

f abc

• share variables with main script
• but have their own argument list

$ cat >fun-script
#!/bin/sh
myvar=xyz
f() {
 myvar=$1
}
f $2
echo $myvar
$ chx fun-script
$ fun-script a b
b

Scriptable
Programs

Commands 6

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 72

UNIXPower Tools
Commands 6

Scriptable Programs

• shell works on whole files

• scriptable programs work within files

sed – 'stream editor'
rather archane - OK if you like ed

awk – C like programming language
process file line by line

perl – cross between awk and shell
used heavily in web CGI scripts

• focus on awk

• use shell + awk for maximum effect

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 73

awk – structure

awk -f command-file data-file

❍ processes data-file line by line
❍ uses awk script in command-file

• general format of awk script:
BEGIN { initial statements }
pattern{ statements }
pattern{ statements }
END { final statements }

❍ statements within { ... } may be many lines

• execution of script:
① BEGIN statements executed before file read
② patterns matched against each line of data

relevant statements executed on match
③ END statements executed at end of file

• patterns:
❍ may be regular expressions e.g. /̂ [a-z]*$/

❍ or general condition e.g. $1=="abc"
❍ empty means every line

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 74

awk – variables

• two kinds of variable
❍ simple names

BEGIN { count=0}
{ count=count+1}
END { print count}

(counts lines in data file)

❍ field numbers
$3 – third field
$0 – the whole line

BEGIN { count=0; sum=0 }
$1=="add"{ count=count+1;
 sum=sum+$2
}
END { print sum/count}

(average of second field where first is "add")

• any variable may contain a number or string

• fields are separated by white space
but default can be changed using variable FS

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 75

awk – statements

• assignment

variable = expression

• expressions
❍ C-like, including == for equality!
❍ juxtaposition for string concatenation

var="hello " $2

• printing
✼ the default action when no statements given

is to print the line (that is not even {})
❍ print the current line:

print

❍ print selected fields or values

print "second two fields", $2, $3

❍ formatted print (like C printf)

printf "1=%s 2=%d", $1, $2

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 76

awk – control structures

• standard set of conditionals and loops
❍ for example:

if ($2<0) {
 print $1 " is overdrawn"
}

for (i=1; i<=10; i++) {
 print "This line is", i
}

❍ all closely follow C syntax

• also special control over data file
❍ normally all matching patterns are executed
❍ can skip further matches with next

($1=="x"){ next }
{ print $2 }

❍ prints the second field of each line
except those with 'x' as the first field

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 77

awk – and more ...

• arrays/dictionaries
print a[3]
b["fred"] = 7

• output to named files
print "hello" >"fred"

• execution of shell commands
system("wc " $1)

• various built in functions:
❍ numerical (e.g. exp, sqrt, log)
❍ string manipulation including

regular expression substitution

• 'new awk' has user functions too
(called nawk on some systems)

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 78

☞ ☞ ☞ ☞ Hands on ✍ ✍ ✍ ✍

☞ experiment with awk, using some of the examples
from the previous pages

☞ go over any examples from the slides

☞ the next page is an awk script and associated shell
script for getting the bounding box information out
of an encapsulated postscript picture

☞ notice how the shell script checks arguments
and the awk script scans the file

☞ this is part of a suite of scripts I wrote to manipulate
and edit 120 epsf pictures for a textbook on HCI
which I co-authored

☞ it is the simplest . . . but quite typical

☞ general lesson – use each tool where it is best fitted

UNIXPower Tools University of Huddersfield, Short Course Notes Alan Dix © 1996 79

@ $ # \ & | Real code | & / # $ @

epsf-getbbx

#!/bin/sh
case $# in
 0) awk -f epsf-getbbx.awk;; # standard input
 1) awk -f epsf-getbbx.awk $1;;
 *) echo "usage:" $0 "{epsf-file}"
 exit 1;;
esac
exit 0

epsf-getbbx.awk

epsf-getbbx.awk
gets bounding box
looks for lines of the form:
̀ %%BoundingBox: 132 220 473 457'
x0 y0 x1 y1

BEGIN {
}

$1 == "%%BoundingBox:" {
 print $2, $3, $4, $5
 exit 0
}

{
 next
}

END {
 exit 1
}

