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chapter 8

implementation support

extract for MSc/MRes AISD

Programming the application - 1
read-evaluation loop

repeat
read-event(myevent)
case myevent.type

type_1:

do type_1 processing
type_2:

do type_2 processing
...

type_n:

do type_n processing
end case

end repeat

Programming the application - 1
notification-based
void main(String[] args) {

Menu menu = new Menu();

menu.setOption(“Save”);

menu.setOption(“Quit”);
menu.setAction(“Save”,mySave)

menu.setAction(“Quit”,myQuit)
...

}

int mySave(Event e) {
// save the current file

}

int myQuit(Event e) {
// close down

}

going with the grain

• system style affects the interfaces
– modal dialogue box

• easy with event-loop (just have extra read-event loop)
• hard with notification (need lots of mode flags)

– non-modal dialogue box
• hard with event-loop (very complicated main loop)
• easy with notification (just add extra handler)

beware!
if you don’t explicitly design it will just happen

implementation should not drive design

Using toolkits

Interaction objects
– input and output

intrinsically linked

Toolkits provide this level of abstraction
– programming with interaction objects (or
– techniques, widgets, gadgets)
– promote consistency and generalizability
– through similar look and feel
– amenable to object-oriented programming

move press release move

interfaces in Java

• Java toolkit – AWT (abstract windowing toolkit)

• Java classes for buttons, menus, etc.

• Notification based;
– AWT 1.0 – need to subclass basic widgets
– AWT 1.1 and beyond -– callback objects

• Swing toolkit
– built on top of AWT – higher level features
– uses MVC architecture (see later)
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User Interface Management
Systems (UIMS)
• UIMS add another level above toolkits

– toolkits too difficult for non-programmers

• concerns of UIMS
– conceptual architecture
– implementation techniques
– support infrastructure

• non-UIMS terms:
– UI development system (UIDS)
– UI development environment (UIDE)

• e.g. Visual Basic

UIMS as conceptual architecture

• separation between application semantics and
presentation

• improves:
– portability – runs on different systems
– reusability – components reused cutting costs
– multiple interfaces – accessing same functionality
– customizability – by designer and user

UIMS tradition – interface
layers / logical components

• linguistic: lexical/syntactic/semantic

• Seeheim:

• Arch/Slinky

presentation dialogue application

dialogue

lexical

physical
functional

core

func. core
adaptor

Seeheim model

Presentation
Dialogue
Control

Functionality
(application
interface)

USERUSER APPLICATION

switch

lexical syntactic semantic

conceptual vs. implementation

 Seeheim
– arose out of implementation experience
– but principal contribution is conceptual
– concepts part of ‘normal’ UI language

 … because of Seeheim …
… we think differently!

e.g. the lower box, the switch
• needed for implementation
• but not conceptual

presentation dialogue application

semantic feedback

• different kinds of feedback:
– lexical  – movement of mouse
– syntactic – menu highlights
– semantic – sum of numbers changes

• semantic feedback often slower
– use rapid lexical/syntactic feedback

• but may need rapid semantic feedback
– freehand drawing
– highlight trash can or folder when file dragged
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what’s this?
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more layers!
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Arch/Slinky

• more layers! – distinguishes lexical/physical
• like a ‘slinky’ spring different layers may be

thicker (more important) in different systems
• or in different components

dialogue

lexical

physical
functional

core

func. core
adaptor

monolithic vs. componens

• Seeheim has big components

• often easier to use smaller ones
– esp. if using object-oriented toolkits

• Smalltalk used MVC – model–view–controller
– model – internal logical state of component
– view – how it is rendered on screen
– controller – processes user input

MVC
model - view  - controller

model

view

controller
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MVC issues

• MVC is largely pipeline model:
 input → control → model → view → output

• but in graphical interface
– input only has meaning in relation to output

 e.g. mouse click
– need to know what was clicked
– controller has to decide what to do with click
– but view knows what is shown where!

• in practice controller ‘talks’ to view
– separation not complete

PAC model

• PAC model closer to Seeheim
– abstraction – logical state of component
– presentation – manages input and output
– control – mediates between them

• manages hierarchy and multiple views
– control part of PAC objects communicate

• PAC cleaner in many ways …
but MVC used more in practice
 (e.g. Java Swing)

PAC
presentation - abstraction  - control

abstraction presentation

control

A P
C

A P
C

A P
C A P

C

Implementation of UIMS

• Techniques for dialogue controller
• menu networks • state transition diagrams
• grammar notations • event languages
• declarative languages • constraints
• graphical specification

– for most of these see chapter 16

• N.B. constraints
– instead of what happens say what should be true
– used in groupware as well as single user interfaces

 (ALV - abstraction–link–view)

see chapter 16 for more details on several of these

graphical specification

• what it is
– draw components on screen
– set actions with script or links to program

• in use
– with raw programming most popular technique
– e.g. Visual Basic,  Dreamweaver,  Flash

• local vs. global
– hard to ‘see’ the paths through system
– focus on what can be seen on one screen

The drift of dialogue control

• internal control
(e.g., read-evaluation loop)

• external control
(independent of application semantics or presentation)

• presentation control
(e.g., graphical specification)


