
1

chapter 8

implementation support

extract for MSc/MRes AISD

Programming the application - 1
read-evaluation loop

repeat
read-event(myevent)
case myevent.type

type_1:

do type_1 processing
type_2:

do type_2 processing
...

type_n:

do type_n processing
end case

end repeat

Programming the application - 1
notification-based
void main(String[] args) {

Menu menu = new Menu();

menu.setOption(“Save”);

menu.setOption(“Quit”);
menu.setAction(“Save”,mySave)

menu.setAction(“Quit”,myQuit)
...

}

int mySave(Event e) {
// save the current file

}

int myQuit(Event e) {
// close down

}

going with the grain

• system style affects the interfaces
– modal dialogue box

• easy with event-loop (just have extra read-event loop)
• hard with notification (need lots of mode flags)

– non-modal dialogue box
• hard with event-loop (very complicated main loop)
• easy with notification (just add extra handler)

beware!
if you don’t explicitly design it will just happen

implementation should not drive design

Using toolkits

Interaction objects
– input and output

intrinsically linked

Toolkits provide this level of abstraction
– programming with interaction objects (or
– techniques, widgets, gadgets)
– promote consistency and generalizability
– through similar look and feel
– amenable to object-oriented programming

move press release move

interfaces in Java

• Java toolkit – AWT (abstract windowing toolkit)

• Java classes for buttons, menus, etc.

• Notification based;
– AWT 1.0 – need to subclass basic widgets
– AWT 1.1 and beyond -– callback objects

• Swing toolkit
– built on top of AWT – higher level features
– uses MVC architecture (see later)

2

User Interface Management
Systems (UIMS)
• UIMS add another level above toolkits

– toolkits too difficult for non-programmers

• concerns of UIMS
– conceptual architecture
– implementation techniques
– support infrastructure

• non-UIMS terms:
– UI development system (UIDS)
– UI development environment (UIDE)

• e.g. Visual Basic

UIMS as conceptual architecture

• separation between application semantics and
presentation

• improves:
– portability – runs on different systems
– reusability – components reused cutting costs
– multiple interfaces – accessing same functionality
– customizability – by designer and user

UIMS tradition – interface
layers / logical components

• linguistic: lexical/syntactic/semantic

• Seeheim:

• Arch/Slinky

presentation dialogue application

dialogue

lexical

physical
functional

core

func. core
adaptor

Seeheim model

Presentation
Dialogue
Control

Functionality
(application
interface)

USERUSER APPLICATION

switch

lexical syntactic semantic

conceptual vs. implementation

 Seeheim
– arose out of implementation experience
– but principal contribution is conceptual
– concepts part of ‘normal’ UI language

 … because of Seeheim …
… we think differently!

e.g. the lower box, the switch
• needed for implementation
• but not conceptual

presentation dialogue application

semantic feedback

• different kinds of feedback:
– lexical – movement of mouse
– syntactic – menu highlights
– semantic – sum of numbers changes

• semantic feedback often slower
– use rapid lexical/syntactic feedback

• but may need rapid semantic feedback
– freehand drawing
– highlight trash can or folder when file dragged

3

what’s this?

USER

Lexical Syntactic Semantic

APPLICATION
Application
Interface
Model

Dialogue
Control

Presentation

the bypass/switch

USER

Lexical Syntactic Semantic

APPLICATION
Application
Interface
Model

Dialogue
Control

Presentation

rapid semantic
feedback

direct communication
between application

and presentation

but regulated by
dialogue control

more layers!

dialogue

lexical

physical
functional

core

func. core
adaptor

Arch/Slinky

• more layers! – distinguishes lexical/physical
• like a ‘slinky’ spring different layers may be

thicker (more important) in different systems
• or in different components

dialogue

lexical

physical
functional

core

func. core
adaptor

monolithic vs. componens

• Seeheim has big components

• often easier to use smaller ones
– esp. if using object-oriented toolkits

• Smalltalk used MVC – model–view–controller
– model – internal logical state of component
– view – how it is rendered on screen
– controller – processes user input

MVC
model - view - controller

model

view

controller

4

MVC issues

• MVC is largely pipeline model:
 input → control → model → view → output

• but in graphical interface
– input only has meaning in relation to output

 e.g. mouse click
– need to know what was clicked
– controller has to decide what to do with click
– but view knows what is shown where!

• in practice controller ‘talks’ to view
– separation not complete

PAC model

• PAC model closer to Seeheim
– abstraction – logical state of component
– presentation – manages input and output
– control – mediates between them

• manages hierarchy and multiple views
– control part of PAC objects communicate

• PAC cleaner in many ways …
but MVC used more in practice
 (e.g. Java Swing)

PAC
presentation - abstraction - control

abstraction presentation

control

A P
C

A P
C

A P
C A P

C

Implementation of UIMS

• Techniques for dialogue controller
• menu networks • state transition diagrams
• grammar notations • event languages
• declarative languages • constraints
• graphical specification

– for most of these see chapter 16

• N.B. constraints
– instead of what happens say what should be true
– used in groupware as well as single user interfaces

 (ALV - abstraction–link–view)

see chapter 16 for more details on several of these

graphical specification

• what it is
– draw components on screen
– set actions with script or links to program

• in use
– with raw programming most popular technique
– e.g. Visual Basic, Dreamweaver, Flash

• local vs. global
– hard to ‘see’ the paths through system
– focus on what can be seen on one screen

The drift of dialogue control

• internal control
(e.g., read-evaluation loop)

• external control
(independent of application semantics or presentation)

• presentation control
(e.g., graphical specification)

