Formal Methods in HCI:

Moving Towards an Engineering Approach

Alan J. Dix

HCI Group, Dept. of Computer Science
University of York
Heslington, YORK YO1 5DD UK
alan@minster.york.ac.uk

Overview

Formal models in HCI

- why they're good ...
- and why they're bad!

Analysing dialogue descriptions

- existing part of interface design
- automatic analysis
- bridging the semantic/lexical gap

Status/event analysis

- formal underpinning
- naïve psychology
- engineering level of expertese

Formal Models of Interactive Systems

Why use formal methods

Everyone else is

- not a silly reason!
- interface can get 'left out'
 of the software engineering process

Intellectual control

- interfaces are complex
- context dependent \rightarrow not modular
- orthogonality

Understanding

- generalisable knowledge
- specific results

But ...

- requires considerable expertese

The PIE model

A black-box model

More formally ...

 $P == \operatorname{seq} C$

 $I:P\to E$

 $display: E \to D$

 $result: E \rightarrow R$

 $doit: E \times P \to E$

Formal Methods in HCI: Moving Towards an Engineering Approach

Alan Dix ©1993

Formal models (2)

Reachability and undo

Reachability — getting from one state to another.

$$\forall\, e,e'\in E\,\bullet\,\exists\, p\in P\,\bullet\, doit(e,p)=e'$$

Too weak

Undo — reachability applied between current state and last state.

$$\forall c \in C \bullet doit(e, c \cap undo) = e$$

Impossible except for very simple system with at most two states!

Better models of *undo* treat it as a special command to avoid this problem

Dialogue Analysis

State transition networks

circles – states, arcs – actions/events

Formal Methods in HCI: Moving Towards an Engineering Approach Alan Dix ©1993

Dialogue analysis (1)

Dialogue Descriptions Why are they used?

- UIMS
- Paper specifications even flowcharts!
- Documentation
- Prototyping tools e.g., Hyperdoc

JVC HR-D540EK VCR

on,tape,play,pause			
Tape in	Rewind	Forward)
	Stop/Eject	Play)
	Record	Pause	Operate
acceccecc		aaaaaaaaaaa	***************************************
Play play Operate off Forward fast Rewind rew	apeln Forward	pause playing a tage	pe , but have paused it
Pause Record Stop/Eject <u>onTapeln</u> Tape in		Holding the pause seconds) provides	button down (for more than 2 slow playback.
fTapeOut		Pressing Pause re frame at a time.	peatedly advances the video one

Flowcharts

boxes – process/event **not** state 1000% productivity gain! orthogonal to implementation

Formal Methods in HCI: Moving Towards an Engineering Approach Alan Dix ©1993

Dialogue analysis (3)

Action properties

completeness

- missed arcs
- unforeseen circumstances

determinism

- several arcs for one action
- deliberate: application decision
- accident: production rules, nested escapes

consistency

- same action, same effect?
- modes and visibility

State properties

reachability

- can you get anywhere from anywhere?
- and how easily

reversibility

- can you get to the previous state?
- but NOT undo

dangerous states

- some states you don't want to get to

Dangerous states (i)

Word processor: two modes and exit

F1 - changes mode

F2 - exit (and save)

Esc – no mode change

but...

Esc resets autosave

exit with/without save \rightarrow dangerous states duplicate states – semantic distinction

Dangerous states (ii)

F1-F2 – exit with save

F1-Esc-F2 – exit no save

actual layout ...

Digital watch – Users instructions

limited interface – 3 buttons button A moves between main modes

dangerous states

• guarded by two second hold

completeness

- distinguish depress A from release A
- what do they do in all modes?

Digital watch – Designers instructions

and that's only one button!

Status/Event Analysis

Status/event analysis

semi-formal technique

"engineering" level analysis
based on formal models
uses naïve psychology

clocks and calendars as example

status – analogue watch face event – an alarm

Properties of events

status change event

• the passing of a time

actual and perceived events

• usually some gap

polling

- glance at watch face
- status change becomes perceived event

granularity

- birthday days
- appointment minutes

Naïve psychology

Predict where the user is looking

mouse – when positioning insertion point – intermittantly when typing screen – if you're lucky

Immediate events

audible bell – when in room (and hearing) peripheral vision – movement or large change

Closure

lose attention (inc. mouse) concurrent activity

Example – screen button widget (i)

screen button often missed, ... but, error not noticed

a common widget, a common error: Why?

Closure

mistake likely – concurrent action not noticed – semantic feedback missed

Solution

widget feedback for application event a perceived event for the user

N.B., an expert slip – testing doesn't help

Screen button widget (ii)

a HIT

or a MISS

Formal Methods in HCI: Moving Towards an Engineering Approach

Alan Dix ©1993

Status/event Analysis (5)

Summary

Formal models

- powerful and successful
- require formal expertise

Dialogue descriptions

- often there already
- both hand and automatic analysis

Status/event analysis

- formal concepts + naïve psychology

Engineering approach

packaging up formal methods for the practitioner