

Value Engineering – the long and the short of it

Alan Dix
Computational Foundry, Swansea University, Wales

https://alanadix.com/academic/papers/value-engineering-2020/

Abstract: You can brow-beat people into doing what you want, try to persuade them to go along with you,
or subtly fool them. However, it is usually far better to accept that people have different drives, aspirations
and motivations and then design systems and process that achieve organisational goals given the particular
personal values that drive individual decisions. This is value engineering. Through a series of short case
studies, this article outlines certain aspects of human behaviour that I have found valuable in both
theoretical understanding and practical application. We will see that the basic principle of understanding
people’s values can be applied at multiple levels from large-scale organisational processes to individual
moment-by-moment decisions. We will also see that it is important to understand human values at
different timescales, a fact noted by Rousseau in the 18th century and still pertinent in designing for climate
change or pandemic today.

Keywords: human–computer interaction, individual values, organisational design, user experience

Introduction

This	article	is	a	personal	account,	not	of	a	particular	piece	of	cutting-edge	behavioural	science,	but	
rather	 of	 certain	 aspects	 human	 behaviour	 I	 have	 found	 useful	 over	 a	 35-year	 career	 in	 human–
computer	interaction	research	and	practice.		Centrally	it	concerns	individual	values,	not	in	the	ethical	
sense,	 but	 the	 particular	 motivations,	 drives	 and	 goals	 that	 determine	 our	 moment-to-moment	
decisions	and	actions.	

Applying	this	in	practice	is	a	two-step	process.	

1. The	 first	 is	 to	 understand	 the	 individual	 values	 that	 drive	 decisions	 and	 behaviour	 at	 different	
scales	and	times,	recognising	that	each	individual	is	different.				

2. Second,	 once	 we	 understand	 them,	 is	 to	 design	 system	 structures	 and	 processes	 that	 achieve	
organisational	goals	given	these	individual	values.		That	is	value	engineering.	

The	 term	 ‘value	engineering’	 initially	 sounds	 insidious	bringing	 to	mind	advertisers	manipulating	
our	 purchasing	 decisions,	 or	 paternalistic	 government	 behavioural	 science	 units,	 inspired	 by	Thaler	
and	 Sunstein’s	 “Nudge”	 [TS08],	 influencing	 our	 choices	 in	 health,	 finance	 and	 maybe	 even	 politics.		
However,	 it	 can	 be	 transparent	 and	 something	 we	 can	 do	 to	 ourselves,	 for	 example,	 using	 smaller	
dinner	plates	to	reduce	portion	size.	

We	 can	 see	 a	 real	 example	 of	 this	 working	 in	 Box	1.	 	 The	 system	 analyst	 spent	 time	 observing	
machine	 operators,	 realised	 that	 keeping	 their	 clothes	 clean	was	 a	major	 priority,	 and	 then	made	 a	
small	 intervention	 that	 achieved	 the	 organisational	 goal	 of	 higher	 throughput,	 working	 with,	 not	
against,	the	operators’	own	values	[Anon].	

There	are	many	different	people	involved	in	the	software	production	process:	clients	who	procure	a	
system,	potential	stakeholders	interviewed/consulted	as	part	of	design,	within	the	software	company:	
developers,	 designers,	 analysts,	 marketing	 and	 management;	 after	 production	 the	 primary	 users,	
documentation	they	use,	help	centres	and	maintenance.		We	may	want	to	apply	value	engineering,	or	

Value Engineering – the long and the short of it Alan Dix

 2

indeed	the	other	behaviour	science	insights	in	this	Special	Issue,	to	the	actors	at	different	stages	of	this	
process.	

The	 interventions	we	can	consider	range	in	scale	 from	a	whole	organisation	to	 individual	actions,	
and	also	over	different	time	scales.		We’ll	start	by	looking	at	the	largest	scale	and	the	work	down,	each	
level	 illustrated	by	a	story	of	practical	application.	 	However,	every	 large-scale	 intervention	depends	
on	numerous	personal	choices,	so	this	is	partially	about	the	lens	with	which	we	examine	activity.	

	

Box	1:	The	printer	and	the	ink	

The	first	‘proper’	computer	book	I	ever	read	was	a	1960s	book	on	Systems	Analysis	[Anon]	
that	 I	 found	 in	a	public	 library	when	on	a	seaside	holiday	one	summer.	 	 I	have	no	 idea	of	 the	
author	or	title,	but	it	profoundly	influenced	my	own	notions	of	computing.	

The	author	 told	of	an	assignment	 to	a	 company	where	 they	had	recently	had	delivery	of	a	
new	printing	machine.	 	The	machine	was	not	achieving	the	desired	throughput	and	they	were	
wondering	whether	they	needed	to	upgrade	further	to	a	computer-controlled	one.			After	a	short	
period	he	went	back	to	the	management	and	said,	“For	a	budget	of	100	dollars	a	year	I	can	solve	
your	problems”.		His	clients	were	amazed	as	they	had	been	expecting	to	spend	tens	of	thousands	
on	 a	 new	 computerised	 printer,	 but	 they	 followed	 his	 advice	 and	 the	 throughput	 increased	
markedly.	

What	did	he	do?	

Before	thinking	about	a	solution,	the	author	had	spent	some	time	observing	the	printer	and	
those	using	 it.	 	 In	particular	 the	direct	machine	operators	were	all	young	women,	and	he	saw	
that	they	approached	the	machine	very	tentatively	–	 it	was	a	printer	with	lots	of	 ink	and	they	
were	being	careful	of	their	clothes.		The	hundred	dollars	bought	white	overalls	for	them	to	wear.		
Once	their	clothes	were	protected,	they	worked	more	freely,	and	the	machine	operated	to	peak	
efficiency.	

	

Large scale – organisational structures

In	 the	 UK	 through	 the	 1950s	 and	 1960s,	 it	 was	 common	 for	 employees	 to	 spend	 their	 whole	
working	 life	 with	 a	 single	 company;	 maybe	 starting	 as	 an	 apprentice	 and	 then	 gradually	 working	
through	 the	 ranks,	 with	 on-the-job	 training	 and	 day	 release	 schemes.	 	 There	 was	 often	 a	 sense	 of	
loyalty	to	the	company,	and	a	sense	of	working	to	a	common	goal,	aided	no	doubt,	by	this	being	a	time	
of	diminishing	inequality	across	society	and	post-war	optimism.		In	Asian	factories,	this	was	often	even	
more	apparent	with	morning	corporate	exercise	sessions	–	beloved	by	documentary	filmmakers	of	the	
time.	

This	is	a	form	of	value	alignment	–	workers	and	bosses	with	a	shared	goal.	

As	we	shall	see	later	in	this	article,	these	shared	high-level	goals	may	not	always	lead	to	mutually	
beneficial	behaviour,	but	are	often	a	touchstone	for	success.	 	Certainly,	over	the	years	whenever	I’ve	
scrutinised	a	contract,	I	look	less	for	complex	protective	measures	and	more	for	those	that	create	the	
grounds	for	win-win	situations:	where	the	other	party’s	gains	mean	that	my	university	or	organisation	
gains,	and	vice	versa.	 	 If	 this	 is	 the	case,	 then	there	may	still	be	some	disparity,	but	 in	general	 if	 the	
other	party	follows	their	best	interest,	your	own	institution	gains.	

In	such	contracts	it	is	not	that	you	actually	share	the	same	underlying	values,	but	that	they	create	a	
structure	within	which	you	can	each	pursue	your	individual	goals	and	as	a	side	effect	benefit	the	other.	

Value Engineering – the long and the short of it Alan Dix

 3

In	general	we	can	engineer	such	situations,	even	when	dealing	with	 large	numbers	of	 individuals	
with	disparate	values.	 	Rather	than	convincing	employees,	end-users	or	customers	to	adopt	our	own	
values,	we	accept	the	differences	and	work	with	them.	 	This	is	 just	the	same	as	when	you	work	with	
any	physical	material;	you	engineer	outcomes	based	on	what	is	there,	not	what	you’d	like	to	it	be!	

In	the	example	 in	Box	2,	when	faced	with	a	complex	situation	(ten	group	heads	with	six	staff	and	
250	modules),	 a	market-like	 system	allowed	group	heads	 to	allocate	 their	own	staff,	 satisfying	 their	
own	 values	 for	 autonomy	 and	 equity,	 whilst	 still	 satisfying	 the	 university’s	 organisational	 goals	 of	
efficient	teaching.		That	is	we	achieved	alignment	of	outcomes	without	identical	values.	

As	well	 as	 applying	 such	principles	 to	 the	 systems	we	 create,	we	 can	also	 apply	 them	within	 the	
software	engineering	process.		For	example,	at	one	point	it	was	reported	that	Microsoft	development	
teams	were	responsible	for	the	maintenance	costs	of	the	software	they	produced.		There	is	nothing	like	
knowing	you	are	going	to	be	responsible	for	bug	fixing	to	ensure	well-engineered	code!		I	don’t	know	
how	long	this	practice	persisted	nor	how	successful	it	was;	as	we’ll	see	later,	long-term	value	alignment	
does	not	 necessarily	 lead	 to	 short-term	behaviour.	 	Maybe	 though,	 this	 is	 something	 that	 should	be	
applied	to	CEOs	making	their	bonuses	linked	to	10-year	results,	not	3-5	year	periods	of	office.	

	

Box	2:	A	market	for	timetabling	

Some	 years	 ago	 I	 had	 a	 senior	 position	 in	 a	 university	 computer	 department.	 	 The	
department	 had	 previously	 been	 three	 separate	 divisions	 of	 20	 staff,	 each	 of	 which	 was	
responsible	 for	 around	 80	 teaching	modules	 including	 some	 first	 year,	 some	more	 advanced	
undergraduate	and	some	masters	teaching.	 	Each	division	had	managed	its	own	assignment	of	
staff	 to	 teaching,	 with	 an	 occasional	 exchange	 of	 staff	 between	 the	 divisions,	 and	 this	 had	
worked	well.	

Just	prior	to	my	own	appointment	the	three	divisions	had	been	merged	into	a	single	unit	with	
60	staff	divided	into	ten	research	groups	of	different	sizes,	which	each	took	responsibility	for	a	
small	number	of	modules	pertinent	to	their	area.		The	aim	was	to	maximise	the	autonomy	of	the	
groups,	 but	 the	 topics	 of	 the	 groups	 meant	 that	 some	 had	 more	 large-class-size	 ‘low	 level’	
modules	than	others	and	some	were	starting	to	create	many	new	very	specialised	modules,	each	
of	which	would	only	have	a	few	students	each.		Our	challenge	was	to	somehow	allocate	60	staff	
to	 around	 250	 modules	 and	 manage	 new	 module	 creation	 in	 ways	 that	 ensured	 efficient	
teaching	whilst	maintaining	group	autonomy.	

We	kept	discussing	this	at	management	meetings	and	then	putting	off	 the	decision.	 	As	the	
new	appointee	I	initially	assumed	my	colleagues	knew	better,	but	eventually	offered	to	have	a	
go	at	the	problem.	

I	 gathered	 the	 group	 heads	 together	 and	 outlined	 a	 sort	 of	market,	with	 two	 student	 FTE	
‘currencies’	one	for	large-class	modules,	one	for	the	rest.		Each	group	head	had	a	balance	sheet,	
in	the	credit	side	was	the	student	FTEs	for	the	modules	they	were	responsible	for,	on	the	debit	
was	the	number	of	student	FTEs	that	needed	to	be	taught	by	the	group,	taking	into	account	their	
staffs’	available	time.		Their	job	was	to	balance	their	books,	negotiate	between	themselves	who	
taught	what	and	update	a	master	spreadsheet.	

The	system	was	clearly	transparent	and	fair	and	there	were	no	objections.		Over	the	coming	
month	the	ten	independent	group	heads	allocated	their	60	staff	to	the	250	modules	and	only	on	
three	occasions	was	I	called	on	to	help	when	there	was	a	difficult	assignment.	

It	 worked	 so	 well	 because	 of	 value	 engineering:	 the	 process	 allowed	 the	 group	 heads	 to	
pursue	their	own	value	systems	of	autonomy	whilst	as	a	side	effect	achieving	the	organisational	
goals	of	effective	teaching.	

Value Engineering – the long and the short of it Alan Dix

 4

	

Medium Scale – products and customers

When	dealing	with	our	own	software	development	teams	or	with	organisational	employees,	we	can,	
to	some	extent,	impose	the	systems	and	procedures	that	we	believe	can	create	beneficial	outcomes.	

However,	when	offering	a	product	to	end-users	who	have	choice,	adoption	is	a	core	issue.		

This	was	 recognised	 quite	 early	 in	 the	 CSCW	 (computer-supported	 cooperative	work)	 literature.		
Jonathan	Grudin	wondered	why	so	many	early	groupware	systems	failed,	and	identified	several	factors	
[Gr88],	 some	 very	 pertinent	 to	 this	 article.	 	 First	 there	 was	 often	 a	 disjunction	 between	 cost	 and	
benefits;	that	is	a	failure	of	value	alignment	discussed	above.		Equally	important	were	issues	of	critical	
mass.		It	is	clear	nowadays	how	useful	it	is	to	have	a	phone,	email,	and	instant	messaging:	everyone	has	
them,	so	if	we	want	to	communicate	with	someone	it	is	sensible	to	use	them	ourselves.	But	what	about	
the	very	first	person	to	buy	a	phone,	or	adopt	email?	

Once	 a	 critical	 mass	 of	 users	 have	 been	 reached,	 the	 value	 for	 each	 user	 exceeds	 the	 cost	 of	
purchase/installation/learning,	 leading	 to	 self-sustaining	adoption,	but	 the	difficult	part	 is	designing	
zero-point	value:	the	reason	for	the	very	first	user	to	adopt	before	anyone	else	does	so.		More	generally	
designers	often	focus	on	the	long-term	benefits	once	their	products	are	adopted	but	neglect	the	path	to	
adoption	[DX08].	

In	the	1980s	ICL	promoted	data	dictionaries	to	its	customers	as	this	would	enable	far	more	efficient	
and	reliable	system	creation,	but	the	only	obvious	way	to	adopt	them	was	en-masse,	a	large-scale	re-
engineering	 of	 one’s	 code	 base;	 not	 surprisingly	 the	 local	 authority	 for	which	 I	worked	 at	 the	 time	
continued	 with	 a	 system	 of	 paper	 documentation	 of	 file	 structures	 and	 copy-and-paste	 of	 data	
definitions	between	COBOL	programs.		In	the	2000s	the	PHP	community	faced	exactly	the	same	hurdle	
with	a	code-breaking	change	in	semantics	between	PHP	versions	4	and	5.	Because	the	same	syntax	had	
different	meaning,	this	could	not	even	be	detected	by	run-time	errors,	but	required	literally	examining	
code	line	by	line.		Not	surprisingly	it	took	at	least	five	years	for	many	open-source	code-bases	to	adopt	
the	 new	 version,	 and	 I	 was	 aware	 of	 commercial	 websites	 still	 using	 PHP	 4	 ten	 years	 after	 it	 was	
deprecated.	 	 In	both	 cases	 the	 lack	of	 an	 incremental	 conversion	 strategy	meant	 there	was	no	 clear	
path	to	adoption,	no	matter	how	good	the	end	point	would	be.	

Understanding	 these	 issues	 allows	 one	 to	 deliberately	 engineer-in	 zero-point	 value	 and	 design	
paths	 for	 adoption.	 	 The	 earliest	 explicit	 example	 of	 this	 that	 I	 know	 of	 was	 the	 work	 of	 Andrew	
Cockburn	 and	 Harold	 Thimbleby	 [CT93]	 who	 created	 an	 email	 system	 that	 employed	 threading	 of	
email	 conversations	 that	worked	 particularly	 richly	when	multiple	 users	 had	 the	 same	 system,	 but	
used	automatic	threading	to	provide	zero-point	value,	fully	20	years	before	this	was	available	in	Gmail!	

In	dot-com	years	we	extended	this	thinking	to	products	with	multiple	interlinked	users	groups	(see	
Box	3),	analysing	the	market	ecology	of	how	each	user	group’s	adoption	would	influence	the	choices	of	
others.		We	deliberately	designed	a	lattice	of	value	[DX01]	for	each	product	we	created,	offering	zero-
point	 entries	 for	 each	 user	 group	 and	 engineering	mutual	 value	 gains	 for	 the	 interactions	 between	
adopters.	 	Although	we	were	unaware	of	 this	at	 the	 time,	 some	of	 these	 issues	had	been	studied	by	
economists	 analysing	 the	 growth	 of	 spreadsheet	 use	 [BK96];	 the	 theory	 of	 network	 externalities	
subsequently	 became	 critical	 in	 anti-trust	 cases	 against	 Microsoft	 in	 the	 early	 2000s	 and	 in	
understanding	the	growth	of	hi-tech	mega-corporations	since.	

	

	

Value Engineering – the long and the short of it Alan Dix

 5

Box	3:	The	lattice	of	value	

In	1998	I	was	part	of	a	dot-com	era	start-up.		The	word	‘viral’	was	still	a	purely	medical	term	
and	 we	 needed	 to	 work	 out	 our	 own	 ways	 to	 understand	 the	 different	 properties	 of	 an	
interconnected	digital	marketplace.		We	realised	that	there	were	multiple	people	involved	in	the	
success	of	a	new	product,	 for	example,	 in	an	educational	context	teachers,	pupils	and	parents,	
each	of	which	would	influence	the	adoption	decisions	of	each	other.		As	a	platform	provider	we	
were	also	interested	in	the	interactions	of	developers	using	our	platform	and	their	end	users.	

It	 was	 comparatively	 easy	 to	 think	 of	 interventions	 that	 would	 work	 once	 a	 substantial	
number	 of	 users	 and	 developers	 used	 our	 platform:	 if	 there	were	 lots	 of	 developers	 using	 it	
their	users	would	follow,	if	there	were	lots	of	users	already	using	it	then	developers	would	build	
for	it.		Many	innovations	we	saw	stopped	there	…	and	failed.		

	
To	 address	 this,	 for	 each	product	we	would	 create	 a	 ‘lattice	of	 value’	 [DX01].	 	We	were	at	

location	(a)	–	no	users	and	no	developers,	but	we	were	aiming	for	(d)	–	lots	of	both.		In	order	to	
get	from	(a)	to	(d)	we	either	needed	to	traverse	route	(i)–(iii),	or	(ii)–(iv).		For	each	product	we	
designed,	we	aimed	to	have	both	paths.		Steps	(iii)	and	(iv)	were	the	easy	cases	of	getting	users	
once	 we	 had	 developers	 on	 board	 and	 recruiting	 developers	 to	 an	 existing	 user	 base.	 	 We	
focused	particularly	on	the	bootstrapping	steps:	(i)	how	did	we	offer	value	to	the	first	developer	
with	no	existing	user	base;	and	(ii)	how	did	we	offer	value	to	the	first	user	with	no	third-party	
developers.	

We	were	inspired	partly	by	the	success	of	Adobe	PDF	–	Adobe	offered	free	PDF	readers	that	
could	be	distributed	on	CDs	(and	later	the	web)	alongside	documentation	written	in	PDF.		That	
is	they	offered	a	path	for	the	first	developer	(i).	

	

Small Scale – from motivation to behaviour

An	 increasingly	 important	 area	 within	 human–computer	 interaction	 research,	 and	 indeed	 social	
policy	 in	 general,	 is	 the	 design	 of	 systems	 to	 change	 behaviour	 addressing	 areas	 including	 physical	
health,	mental	heath	and	environmental	action.	 	One	 focus	of	 this	are	materials	 that	 in	various	ways	
alter	our	knowledge	and	attitudes	in	relation	to	a	topic	and	so	increase	motivation	to	take	beneficial	
actions.		This	is	not	new;	indeed	the	game	Monopoly	was	originally	designed	with	two	sets	of	rules,	one	
competitive	and	one	cooperative,	in	order	to	instil	the	insidious	dangers	of	the	former!	However,	one	
of	the	truisms	of	this	form	of	research	is	that	there	is	a	vast	gulf	between	motivation	and	behaviour	–	
this	 is	evident	 in	 the	 issue	of	climate	change	where	surveys	consistently	show	younger	people	more	
environmentally	 aware,	 but,	 in	 fact	 it	 is	 the	 older	 demographic	 who	 are	more	 likely	 to	 take	 actual	
climate-beneficial	action	(with	the	one	exception	of	becoming	vegan)	[Av20].	

Value Engineering – the long and the short of it Alan Dix

 6

Why	this	divide	between	motivation	and	behaviour?	

The	 French	 philosopher	 Jean-Jacques	 Rousseau	 identified	 this	 conundrum	 in	 the	 18th	 century	
[Ro62].			Rousseau	distinguished	two	types	of	will,	often	called	real	will	(deep,	long	term	desires)	and	
actual	 will	 (momentary	 drives).	 	 He	 gives	 the	 example	 of	 passing	 a	 jewellery	 shop	 and	 noticing	 a	
beautiful	ring.	He	argues	that	your	actual,	momentary	will	is	to	smash	the	window,	grab	the	ring	and	
run;	however	your	real,	deeper	will,	is	to	live	in	a	well	ordered	society	where	all	people	are	free	of	the	
fear	of	theft.		The	difficulty	is	that	decisions	are	made	in	the	moment,	so	that	actual	will	may	act	against	
real	 will.	 Rousseau	 uses	 this	 to	 promote	 the	 need	 of	 state	 intervention	 from	 libertarian	 principles,	
however	this	applies	more	widely.	 	You	may	be	on	diet	and	really	want	to	lose	weight	(real	will),	but	
surely	that	one	cookie,	won’t	make	a	difference	(actual	will).		Or	during	Covid-19	lockdown	you	know	
that	everyone	should	reduce	travel	to	halt	the	disease	and	save	lives	(real	will),	but	of	course	the	trip	
you	want	to	make,	just	this	once,	is	obviously	necessary	(actual	will).	

Note	 that	 this	 distinction	 is	 different	 from	 the	 two	 types	 of	 conscious/unconscious	 thinking	
popularised	 in	Kahneman’s	“Thinking	Fast	and	Slow”	[Kh11].	 	Unconscious	reactions	and	unthinking	
habits	 are	 one	of	 the	 reasons	 for	 the	 gulf,	 but	 at	 the	moment	 you	 ask	 that	 question	 “surely	 this	 one	
cookie	won’t	matter?”	you	are	making	a	conscious	decision.	

The	reasons	for	the	real–actual	will	gulf	are	multiple:	some	is	about	those	unconscious,	 fast	mode	
actions;	some	is	because	we	heavily	discount	the	future	(in	the	wild,	tomorrow	you	are	dead	anyway,	
so	 not	 worth	 worrying!),	 some	 is	 because	 individual	 actions	 now	 only	 make	 a	 tiny	 and	 uncertain	
impact	on	the	larger	picture	(just	one	plastic	bag).	

Crucially	however,	in	recognising	the	gulf,	we	can	engineer	our	systems	to	bridge	it.	

One	of	the	simplest	design	maxims	is	that	if	you	want	somebody	to	do	something,	make	it	easy.		In	
the	 days	 before	 GDPR	websites	 exploited	 this	 by	making	 personal	 information	 sharing	 the	 default.		
However,	you	can	exploit	 this	 in	more	positive	ways;	one	of	 these	 is	Micawber	management	 (named	
after	Dickens'	famous	procrastinator	[Di50])	or	positive	procrastination	–	making	it	easy	to	put	off	hard	
things	until	a	more	suitable	moment.		For	example,	during	software	development,	at	the	point	you	are	
coding	and	need	to	make	a	choice,	maybe	the	default	colour	or	size	of	a	message,	you	know	that	you	
should	put	this	in	a	system	configuration	option,	but	in	the	rush	of	coding	you	just	define	a	constant.		
So,	 provide	 a	 simple	 comment	 tag	 “**CHECK**”,	 that	 can	 be	 added	 rapidly	 allowing	 coding	 to	
continue,	but	subsequently	automatically	detected	and	highlighted	for	review.	

Another	general	strategy	is	to	provide	means	for	users	to	sign	up	in	times	of	reflection	and	leisure	
based	 on	 their	 long-term	 motivations,	 which	 will	 in	 some	 way	 constrain	 or	 modify	 their	 later	
momentary	 decisions	 and	 behaviour.	 	 Gamification	 often	 works	 in	 this	 way.	 	 Box	 4	 describes	 the	
development	of	OpenBadges	[MP10,	OB],	for	Peer-to-Peer	University		[P2PU]	a	community	with	a	very	
high-level	 of	 intrinsic	motivation	 to	 learn	 (real	will),	 but	who	 still	 found	 it	 useful	 to	 add	 badges	 to	
provide	on-going	encouragement	and	incentive	(actual	will).	

Within	the	software	development	process,	many	aspects	of	Agile	processes	also	exploit	the	power	of	
short-scale	motivation	for	coder	(with	sprints)	and	clients	(with	frequent	deployments)		

	

Value Engineering – the long and the short of it Alan Dix

 7

Box	4:	OpenBadges	

P2PU	(Peer2	to	Peer	University)	allows	its	members	to	create	new	courses	and	follow	each	
other’s	courses	using	a	peer	education	model	[P2PU].		The	course	provider	may	set	the	syllabus,	
but	is	not	necessarily	an	expert	in	the	area,	merely	sets	and	agenda	for	mutual	learning.			There	
is	no	compulsion	to	join	any	course	and	so	those	participating	are	all	highly	motivated.			

Despite	 this	 high	 level	 of	 motivation	 P2PU	 developed	 a	 system	 of	 badges,	 which	 was	
subsequently	adopted	as	the	OpenBadges	project	by	Mozilla	[MP10,	OB].		OpenBadges	allow	you	
to	display	your	achievements	as	a	web	badge,	rather	 like	Guides	and	Scouts	sew	achievement	
badges	onto	their	uniforms.		

It	 is	well	 understood	within	 pedagogic	 and	 economic	 theory	 that	 internal	motivation	 (our	
own	goals	and	aspirations)	is	far	more	powerful	than	external	motivation	(externally	imposed	
goals)	 [BT03];	 this	 is	 one	 of	 the	 reasons	 that	 teachers	 try	 to	 make	 lessons	 fun	 as	 well	 as	
informative.	

Given	a	highly	 internally	motivated	membership	why	did	P2PU	create	what	 is	essentially	a	
form	of	 external	motivation?	 	 In	 fact,	 the	apparent	 contradiction	makes	 sense	once	one	 takes	
into	the	account	the	difference	between	Rousseau’s	real	and	actual	will.		While	a	course	member	
might	want	to	complete	the	course	at	a	large	scale	(real	will),	in	the	moment	during	busy	lives,	
they	constantly	gave	other	things	priority	(actual	will).		The	gamification	of	OpenBadges	offered	
short	term	motivation	to	help	them	achieve	their	long-term	goals.	

	

Putting It Together

Although	these	scales	have	been	presented	separately,	they	of	course	interact.		For	example,	making	
development	 teams	 responsible	 for	 long-term	maintenance;	 solves	 the	 problem	 of	 value	 alignment	
instilling	suitable	long-term	motivation,	but	leaves	open	the	discounting	of	future	cost.		Programmers	
may	 still	 cut	 corners	 to	 ‘get	 things	 out’,	 even	 though	 they	 know	 it	 is	 building	 technical	 debt.	 The	
“**CHECK**”	tag	or	adopting	Agile	practices	may	be	ways	to	translate	the	long-term	desire	to	create	
robust	code	into	momentary	practices.	

In	 short,	whether	 it	 is	 your	 own	day-to-day	 lives,	 the	 coding	 practices	 of	 your	 developers	 or	 the	
adoption	 of	 end-users:	 take	 time	 to	 understand	 the	 values	 of	 people,	 know	 that	 these	 operate	 at	
multiple	granularities,	and	engineer	your	processes	to	ensure	that	each	person’s	moment-to-moment	
value	decisions	work	towards	the	desired	common	goal.	

Take Aways

• Seek	to	understand	the	personal	values	of	people	involved	in	the	software	production	process	

• Recognise	that	long	term	motivations	and	short	term	behaviour	are	different	–	decisions	happen	in	
the	moment	

• Design	 structures,	 processes	 and	 systems	 so	 that	 individuals	 pursuing	 their	 own	 goals	 naturally	
lead	to	desired	organisational	outcomes.	

Value Engineering – the long and the short of it Alan Dix

 8

References
[Anon] (1960s or early ‘70s) The amazing book about systems analysis in the public library at Weston-super-Mare. If you ever

find this book, please let me know.
[Av20] Aviva (2020). “Generation woke? Over 55s most likely to recycle, study shows”. 13 Feb 2020.

https://www.aviva.co.uk/aviva-edit/your-things-articles/generation-woke-over-55s/
[BT03] R. Bénabou, J. Tirole. “Intrinsic and Extrinsic Motivation”, The Review of Economic Studies, 70(3):489–520, 2003.

doi: 10.1111/1467-937X.00253
[BK96] E. Brynjolfsson, C. Kemerer. “Network Externalities in Microcomputer Software: An Econometric Analysis of the

Spreadsheet Market”. Management Science, 42(12):1627-1647, December 1996.
[CT93] Andrew Cockburn , Harold Thimbleby, “Reducing user effort in collaboration support”, Proc. of the international

workshop on Intelligent user interfaces, p.215-218, 1993,
[Di50] C. Dickens. “David Copperfield”, 1850.
[DX01] A. Dix. “The lattice of value – designing products for self-growth”. eBulletin. 2000. (accessed 5/4/2020).

https://www.magisoft.co.uk/alan/ebulletin/lattice-of-value/lattice-of-value.html
[DX08] A. Dix. “Designing for adoption and designing for appropriation”. Talk at at University of Technology, Berlin, 12th Feb

2008. https://www.alandix.com/ academic/papers/berlin-talk-feb-2008/
[Gr88] J. Grudin. Why CSCW applications fail: problems in the design and evaluation of organizational interfaces. Proc. of the

1988 ACM conference on Computer-supported cooperative work (CSCW ’88)., pp. 85–93, 1988. doi: 10.1145/62266.62273
[Kh11] Daniel Kahneman (October 25, 2011). Thinking, Fast and Slow. Macmillan
[MP10] The Mozilla Foundation and Peer 2 Peer University, in collaboration with The MacArthur Foundation. Open Badges for

Lifelong Learning. 2010. (accessed 29/3/2020) https://wiki.mozilla.org/ File:OpenBadgesWorking-Paper_012312.pdf;
[OB] OpenBadges. (accessed 27/1/2020). https://openbadges.org/
[P2PU] Peer 2 Peer University. (accessed 27/1/2020). https://www.p2pu.org/
[Ro62] J-J Rousseau. “The Social Contract”. 1762.
[TS08] R. Thaler, C. Sunstein. “Nudge: Improving Decisions about Health, Wealth, and Happiness”. Yale University Press. 2008.

