
Asynchronous Active Values for
Client-Side Interactive Service Coordination

Alan Dix
Talis,

43 Temple Row
Birmingham, B2 5LS, UK

School of Computer Science
University of Birmingham

Birmingham, UK

alan@hcibook.com
http://www.hcibook.com/alan/papers/avi2012-active-values/

ABSTRACT
This paper describes Asynchronous Active Values (AAV), a
framework for the production of reactive web interfaces that use
API-based web service back-ends. Such interfaces are now
becoming common due to API-oriented application development
and more sophisticated post-Web2.0 mashups. A significant
feature of such interfaces is the need for feedback when parts of
the page display are in some way temporarily invalid, or in flux,
while potentially slow API calls are responding to requests. AAV
extends existing methods such as access-oriented programming
and the observer pattern, by including a 'changing' event in
addition to the normal 'onChange' to enable intermediate
feedback.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation (e.g., HCI)]:
User Interfaces – graphical user interfaces, interaction styles;
H.5.4 [Information Systems]: Hypertext/Hypermedia – user
issues.

General Terms
Design, Human Factors.

Keywords
AJAX, user-interface architecture, asynchronous update, web
development

1. INTRODUCTION
A new breed of web-based interfaces are being developed using
API-based web services. These incorporate rapid feedback for
user interactions using JavaScript and DHTML, but with some
operations giving rise to asynchronous API calls to web services.
When these are sufficiently fast (less than a second), the calls may
be perceived as sufficiently 'instant', however if there is any delay,
whether due to network delays, or complex back-end processing,
then some sort of intermediate feedback is usually required. For
example Fig 1 shows the 'Sending..." indicator used in Gmail after
the user has pressed the email 'Send' button, and Fig 2 shows the
animated 'working' icon used by Facebook whilst loading new
messages.

	
 	
 	
 	
 	

Fig 1 in-flux indicators – "Sending..." in Gmail

Fig 2 in-flux indicators – messages loading in Facebook

As Rosenberg notes in his analysis of the use of AJAX in Yahoo!
mail [27], these progress indicators were a "nonissue in the "old
Web"", as standard browser reload indicators were sufficient (the
blank page!), but become essential when AJAX may update pages
while the user continues with other activity. Other authors also
emphasise the need for such 'changing' indicators, for example
Tonkin [30] says "Without explicit visual clues to the contrary,
users are unlikely to realise that the content of a page is being
modified dynamically".

In both the examples above, there is a straightforward interaction
sequence:

1. user clicks button or link
2. remote AJAX-based API call is initiated
3. display is updated to show 'waiting' value
4. API call returns
5. display is updated with results

However, this flow becomes more complex when a series of
different API calls are required to build the interface. For
example Fig. 3 shows the Query-by-Browsing for SemWeb
interface. This is a variant of the Query-by-Browsing intelligent
database interface [6] but modified for RDF/SPARQL data [25].
At the bottom is a listing of entities of a particular class together
with their properties as a tabular listing (area labelled 'Data'). The
user is able to select which entities are required by adding a tick
(, wanted) or cross (, not wanted) against each. When ready
the user clicks the 'Make a Query' button, at which point the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AVI ‘12, May 21-25, 2012, Capri Island, Italy
Copyright © 2012 ACM 978-1-4503-1287-5/12/05... $10.00

application uses a machine-learning algorithm (a variant of ID3
[26]) to generate a SPARQL query that agrees with the users
choices. This query is then shown in the 'Query' area and the
entities selected by the query are highlighted in the listing. If the
query is not as required the user can mark more entities with ticks
or crosses and repeat the procedure.

Fig 3. Query-by-Browsing for SemWeb

In this interface, updating the display actually requires three
different coordinated API calls:

1. first the chosen entities are sent to the machine learning API,
which returns a decision tree to distinguish wanted from
unwanted entities

2. this decision tree is then passed to a second API to transform
it into valid SPARQL

3. in parallel the decision tree and entities are passed to a third
API, which filters the entities on the tree (equivalent to
performing the SPARQL query).

Step 1 in particular can take some while, so it is important that the
user can see that the query is in the midst of being updated.
Furthermore steps 2 or 3 could return in any order.

If the application were more complex, for example drawing
information from multiple Linking Open Data (LOD) sources [1],
or from multiple APIs, then this picture can become more
complex still.

It is possible to create such interfaces using a traditional
architecture such as model–view–controller, or bespoke solutions,
but the coding is relatively complex, and hence liable to be error
prone and hard to maintain.

Asynchronous active values (AAV) were developed to deal with
this, offering a coding paradigm tuned to deal with multi-step
asynchronous actions. AAV is a framework offering concrete
object classes and methods to create semi-declarative interface
descriptions, but is still 'plain JavaScript', so allows the developer
to modify detailed interactions if required. It therefore sits
between raw code and more all embracing declarative notations
such as Arrowlets [23] or Flapjax [20]. While AAVs could be
used server-side, they are designed primarily for client-side
interactions, unlike Go, Google's concurrent programming
language targeted principally at backend processing [15].

AAV builds on long-standing use of active values dating back to
access oriented programming in LOOPS [29], but in addition to
standard 'onChange' events, AAVs also have 'onInvalid', and
'onChanging' callbacks, which can be used for setting temporary
display state, or other 'in progress' work. AAVs also provide

ways for their value to be set synchronously (normal variable
setting), asynchronously using RESTful JSON APIs, or
asynchronously using bespoke code.

The AAV framework emerged from practical need, but, reflecting
on its development, there were three principle design goals:

• simplicity and parsimony – aiming to hit 90% of problems with
10% of complexity, rather than be all embracing and top heavy.

• flexibility – does not assume the coder will work entirely within
the framework/toolkit, but will use it as appropriate and
alongside other techniques.

• theoretically well founded – not simply hacking or adding
features, thus hoping to avoid 'gotchas' when unexpected future
cases arise.

The remainder of this paper is in four parts. Section 2 gives some
of the theoretical background, in terms of both interaction and
architectural issues for networked interfaces. Section 3 gives an
overview of the use of AAVs in real code. Section 4 explores the
framework in more detail, looking particularly at race conditions
due to asynchronous behaviour. Finally, section 5 discusses issues
arising from practical use and potential future directions.

2. THEORETICAL BACKGROUND
2.1 The Evolution of Interactive Feedback
User interfaces have gone through various levels of development:
the command-line in the 1970s, the GUI and direct manipulation
in the 1980s, transactional web interfaces in the late 1990s, and
now highly interactive client-side web applications. One of the
distinguishing features of direct manipulation identified by
Shneiderman was its rapid incremental feedback, and this has
been a goal of interaction design ever since [28]. During the early
years of web interfaces 'rapid' was not easily managed, however a
more systolic interaction style became the norm with periods of
rapid interaction with a web form, effectively setting up
parameters for longer waits during back-end transactions;
effectively a hybrid of GUI and command-response style
interaction.

Web2.0 interfaces changed this picture using a combination of
JavaScript, DHTML and AJAX to allow client-side web
interactions that were similar to previous desktop applications. To
some extent this makes interaction design in 2012 more similar to
that of the early GUIs in 1983 rather than early web interfaces of
2000. In some ways Google Docs behaves just like a desktop
word processor, with similar interaction and architectural
properties to a desktop word processor except saving to cloud
rather than local disk.

However, there are crucial differences as many local-device
operations operate within known time bounds, whereas network-
based interaction introduces potentially unbounded delays
requiring subtle changes in interactive style [10]. These issues do
not arise solely in networked systems, as even local operations,
such as scanning a large disk, can take a long time, and it has been
suggested, many years ago, that special rules are needed to deal
with such delays, notably a form of mediated interaction where
instant syntactic feedback is offered when semantic feedback is
likely to be delayed [4]. This led to a number of delay-related
design heuristics [5]:

• "good enough now, perfect when there's time"
That is giving some sort of instant partial/approximate feedback,

but updating it when a longer processing or network activity is
complete.

• "don't stop the interface just because the system is busy"
That is, were possible, allow the user to continue to interact with
the system even when there is some sort of long-term or slow
computation/communication occurring.

• "don't stop the system just because the user is busy"
That is, allow the system to continue with processing even when
the user is on the midst of some sort of interaction.

All of these are about some level of asynchrony between user and
system input rather than the immediate and completely user-
controlled interactions normally assumed in direct manipulation.
These delay principles were framed largely in the light of desktop
interfaces where they were important, but occasional or rare,
issues. However, they have now become the norm in API-based
web interfaces.

2.2 User Interface Architecture
The dominant architectural style for interactive systems is usually
some variant of the Model–View–Controller paradigm [18],
originally developed for Smalltalk-based GUIs in the early 1980s
and influential since, albeit with some shifts in details for
transaction-based web systems. MVC is found in frameworks for
desktop systems, for example Java Swing and also for the web,
for example, Google's new Dart programming language is planned
to include an MVC framework [3].

In MVC, user interactions are translated by the Control
component directly into operations on the underlying system
Model. Changes to the Model are then sensed by the View
component (often using the observer pattern [14]), which re-
renders the interface to reflect the current Model. Underlying
MVC is the paradigm whereby the current display always reflects,
as near instantly as possible, the underlying system state following
Shneiderman's "continuous representation of the objects and
actions of interest" for direct manipulation [28].

The very idea of the current system state, embodied in the MVC
Model is always slightly problematic because interface state is
something like a multi-headed hydra. At the base there is some
core functional model corresponding to deep application state, but
this is supplemented with various interaction state, some semi-
permanent (such as the current font, or selection in a word
processor), some more temporary (such as current interaction with
a dialogue box). When we have asynchronous interaction, this
effectively adds to the application state as, whether or not it is
explicitly coded in normal variables of AAVs, the fact that an
item is being updated is a real and important part of the
underlying (distributed) system state. MVC or any other UI
architecture needs to make all of this state available, in some way
or other, to the user (see Fig 4).

As noted, MVC is usually implemented via some variant of the
observer pattern. Effectively ordinary active values can be seen
as a particular form of encapsulation of this pattern, and have been
used as a primary interaction technique in a variety of user
interface toolkits whether or not they are based on MVC.

The earliest use of some form of active value in the literature, of
which we are aware, is the 'Access Oriented' programming
paradigm in LOOPS [29]. In this it was possible to attach
callbacks to any variable both just before it has been set and just
after. The former allowed manipulation of the value being set, but

we have chosen not to implement this in the AAV framework, as
it is not commonly used in user interface code.

There has also been a long history of data-flow-oriented interface
toolkits, often termed 'one way constraints', notably the Garnet
family [2]. More recently this has included web-based coding, for
example, Arrowlets [23] or Flapjax [20]. Typically constraint-
based UI toolkits use some form of special semi-declarative
language, which allow the toolkit to calculate optimal update
sequences. While this has advantages, it both adds another
language to learn, and also limits the programmer to what is
achievable within the special language. Instead we have taken the
approach of providing active values as a lower level abstraction
over which constraint propagation can be easily implemented.

2.3 Collaborative and Distributed Systems
Interfaces for collaborative systems have long had to deal with
issues of asynchrony (e.g. see [16] for an early review). Solutions
have either involved preventing problematic updates through
various forms of locking (e.g. implicit locks in ShrEdit [19]), or
allowing opportunistic concurrency for that is later solved through
synchronisation (e.g. [12]) or operational transform algorithms
(e.g. [13]).

These early groupware systems and algorithms, and more recent
work building on them (e.g. [17] looking at groupware
performance on modern browser technology) are specifically
about groupware interfaces, and more application specific than
AAV intends to be. However, they each, in various ways, deal
with the core issues of any distributed system: liveness (allowing
people to interact with minimal or no blocking) and consistency
(dealing gracefully with race conditions). Solutions to these will
inevitable have a level of application specific semantics. For
example, when you post a status to Twitter through the web
interface it temporarily 'disappears' and then later appears in your
own stream – this used to lead to multiple posts when people
thought their status had been lost, but Twitter now throws away
repeated identical status updates. In contrast, the direct message
stream for a particular user instantly adds the message to the
conversation transcript (local feedback), but may later reorder the
transcript if the other user has sent a message simultaneously but
slightly ahead.

The AAV framework does not attempt to prescribe particular
solutions to these global update issues (although the author is not
without opinions!), but instead limits its scope to in-browser
semantics and offers mechanisms to support the developer in
managing local race conditions (see section 4.4)

	

Fig 4. Interaction and external network state

in MVC (© A. Dix)

2.4 Status–Event Analysis
AAV draw on the author's previous experience of software
architectures inspired by Status–Event analysis [7], notably the
aQtiveSpace framework presented in AVI 2000 [9]. Status–Event
analysis recognises that many aspects of a user interface have a
'status' form; that is, they continually have a value, even if that
value only changes during events. Furthermore, status–status
mappings are common, for example, that the displayed value
reflects an internal value or the Model–View relationship in
MVC. The aQtiveSpace framework was designed precisely to
deal with both status and event interface phenomena, and had a
flexible model of components called 'Qbits' where data direction
and control flow were orthogonal. The ActiveVarProvider
interface (see section 4.4) is inspired by Qbits, which also
managed a level of asynchrony. However, Qbits did not
distinguish the intermediate 'changing' states effectively assuming
that changes would happen 'fast enough'.

3. HOW IT WORKS – FOR THE CODER
It is possible to create an asynchronous interface using a standard
model–view–controller paradigm, by adding additional state
variables. For example, if there is a model variable for the current
SPARQL query (call it query), then we would add a new variable
query_status that can take values of 'loading' or 'loaded', and
then the view component code to maintain the display of the
query would look something like Fig. 5, where the view code is
triggered when either of the model variables query or
query_status is changed (code to add callbacks not shown).

if (query_status == 'loading') {
 $('#query_content').html("Loading ...");
} else {
 $('#query_content').html(query);
}

Fig. 5 code to update display based on an extra state variable

Asynchronous Active Variables effectively wrap this into a single
abstraction, so that each active variable can be set or read, but also
has an intermediate 'changing' state during which reads still
deliver the old value, but users can know that it is in some way
incomplete, or in flux. The equivalent code to Fig. 5 is in Fig. 6.

if (query_var.changing) {
 $('#query_content').html("Loading ...");
} else {
 $('#query_content').html(query_var.get()
);
}

Fig. 6 update display using active variable

Although there is just one variable 'query_var', this is not so
different from the two-variable solution. However, in addition
specific callbacks can be added for an 'onChanging' event,
leading to more event-driven code as shown in Fig. 7.

query_var = new ActiveVar();
query_var.onChanging.attach(function() {
 $('#query_content').html("loading ...");
 });
query_var.onChange.attach(function(query) {
 $('#query_content').html(query);
 });

Fig. 7 AAV with callbacks for changing and changed states

Note, this code is slightly longer as it includes the setting up of the
callbacks, which would also be necessary for the code in Figs 4

and 5, and also the declaration of the active variable. That is,
Fig. 6 is the complete code required.

If the variable 'query_var', were set synchronously (using the
method 'query_var.set(value)',), then only the 'onChange'
event would be triggered, the callback invoked and the display set
to the new query. However, it is the asynchronous use that is
more interesting.

The programmer can take complete control of the active variable
by calling the 'startChange' method when initiating a long-
running activity such as an AJAX call (or complex local
calculation) and then updated using 'set' when the activity is
complete (see section 4 for more details). However, there are a
number of convenience mechanisms to allow easier and more
robust code.

The simplest level, and probably most common for standard web
front-ends, is asynchronously setting the variable by an AJAX
call, which is packaged in a single method 'setJSON(
service_url, operation_name, args)' (see example in
Fig. 8). This method sets the 'changing' flag, initiates the AJAX
call, and also sets a handler so that when the AJAX calls returns
successfully the variable is set with the returned value. If there is
an AJAX call to set the variable already outstanding, this is
aborted, so that only the latest value is set (see section 4.4).

display_query_var.setJSON(
 tree_url, 'tree_to_sparql',
 {'type':table,'fields':fields,'tree':tree}
);

Fig. 8 setting an active variable through an AJAX call

Currently the AJAX call has to be of a particular form. However,
the intention is to remove these restrictions on the service in the
future by adding pluggable filters.

4. AAV – DETAILS AND INTERNALS
Figure 9 shows the main states of an asynchronous active variable
(AAV). The 'stable' state is when there is no update in progress
and the value represents a stable valid value.

	

Fig 9. Main states of AAV (© Alan Dix)

4.1 Basic Behaviours
The simplest use case is when the value is set synchronously
using the set method. This both updates the current value, and
also triggers a 'changed' event. Application specific callbacks
can be attached to this event and any such registered callbacks
will be triggered at this point. Typically this will include updating
the current display, but may also include updating other variables,
either synchronously or by initiating asynchronous updates.

The second uses case is where a variable is set asynchronously.
This can either be done by application-specific code, or more
conveniently using the AJAX/JSON utility method setJSON.
This changes the state of the active variable and also triggers a
'onChanging' event. Callbacks for this event will typically add
some sort of 'loading' or 'updating' message, maybe grey out or
remove the old content of affected display areas. When the
asynchronous activity is complete, the value is update and a
'onChange' event triggered, as in the synchronous set.

A variant of this scenario is when the application detects that a
variable's value is in some way invalid due to a data dependency
even though an asynchronous update has not yet been initiated.
This could happen, for example, in the QbB application when the
query learning is initiated. The query variable is set
asynchronously, so that it enters a 'changing' state. This allows a
callback to update the display of the query. When the query is
updated, this then means the set of currently selected entities in
the list is changed. However, this list is effectively out of date as
soon as one starts to change the query. One might want to
emphasise this by removing or changing the highlight while the
query is being updated. To do this a callback can be added to the
query AAV's onChanging event, which then calls the invalidate
method of the selection AAV, recording the data dependency.
Display code can then attach itself to the selection AAVs
onInvalid event and change the highlighting appropriately.

4.2 Dealing with Failure
Failures of the asynchronous update are currently left to the
application to handle, maybe resetting the variable to some default
value, or the previous value. With more experience we may add
some further convenience methods to perform common recovery
procedures. Note there are two forms of failure here. The most
fundamental is actual failure of the AJAX code, and so represents
a critical problem in the back-end service or network connection.
In contrast, 'soft' errors are effectively 'successful' AJAX return
values, which encode some form of error in their result. The
former will almost always involve a fairly major application-
specific response (although, of course, common in mobile
applications). The softer forms of failure seem most suitable for
'default' actions.

4.3 Application Managed Asynchrony
As noted previously, the setJSON method provides the simplest
means to update values asynchronously. However, if application
developers require more control, for example a lengthy
calculation is required, or a specialised network protocol used,
AAV provides a number of alternative mechanisms.

The most basic mechanism is to simply call the startChange
method directly, which simply triggers the onChange event. Once
the data is ready (e.g. AJAX call completes) the application code
can simply set the value using the synchronous set method.
While this is provided for simple interactions the AAV does not
'know' what is updating it and therefore cannot help to deal with

race conditions or conflicts if there are multiple attempts to update
the same variable asynchronously (see section 4.4. below). This
may happen if the user interacts before an asynchronous update
has completed.

In the example of QbB for SemWeb, the user might select a
number of entitles in the list and then press 'Make Query". This
would then initiate an AJAX call to the backend to infer a query
based on the examples, and also make the query window show
some form of loading/working indication. However, if this takes
some time the user might then select a few more entries and press
"Make Query" a second time. In bespoke code or using the above
startChange then set methods, the application code would need to
keep track of the fact that there are several outstanding AJAX
calls otherwise the completion of the first would update the query
display and remove the loading/working indication.

To help in such situations, the AAV framework supports an
ActiveVarProvider interface, which allows more active
cooperation between the AAV and application code, particularly
when there is the possibility of multiple updates. The application
developer implements a provider class implementing the
ActiveVarProvider interface or extends the generic base class.
The must include three methods:

setVar – gives a reference to the variable, often redundant for
very specific code, but useful for writing more generic cases.

start – called when you should start processing

abort – called if you should stop processing rather than continue
to completion.

Assuming it has not been asked to stop by the abort method, the
developer code can set the value of the variable when the
processing is completed using the special AAV method
provideSet(provider,value). Note this includes the identity
of the provider (usually, 'this'); the reason for this is explained in
section 4.3. In the case where the processing fails, the provider
instead calls the provideFail(provider) method on the AAV.

Having implemented such a class, the application code can set the
AAV value using the setAsync(provider) method giving an
instance of the provider class. The AAV will then manage calling
the provider's setVar, start and, if needed, abort methods
when appropriate.

An alternative mechanism is also provided using the AAV's
getAsyncSetter method. This returns an ActiveVarSetter
instance (which is also a provider). This setter has its own set
method that can be used when the application code has a value
available, and also an onAbort event, to which callback can be
added. The framework ensures that only the value set by the most
recent setter is actually passed on to the AAV.

4.4 Multiple Overlapping Updates
When there are several synchronous updates, the behaviour is
obvious: each set method updates the AAV value and triggers
the changed event.

For asynchronous updates the situation is slightly more complex
as a fresh asynchronous update may be initiated before the
previous update has completed. The solution adopted for AAV is
to cancel the earlier update and only retain the last asynchronous
update, in a manner similar to multiple synchronous updates.

Where the setJSON method has been used for the asynchronous
set, the AAV framework manages all this automatically.

If the application has chosen to mange the update itself, this
behaviour is enforced via the ActiveVarProvider interface.
This is the reason for the abort method in the provider, which is
invoked when a subsequent set, setJSON, setAsync or
getAsyncSetter 'overwrites' the value being asynchronously
updated. The AAV keeps track of the most recent provider and
ignores others even if a provider still invokes providerSet, after
being aborted. This is the reason why the provider is given as a
parameter to the providerSet and providerFail methods.

Note that while this behaviour seems to be the right one for values
representing current up-to-date state, it may be that need arises for
'stream' like variables, where each update matters (e.g. to animate
in some way). If these use cases become apparent, then a stack-
like mechanism of multiple providers may be added to the
framework, or an alternative stream type added. However, for
present the simpler mechanism seems sufficient.

4.5 Simultaneous Updates
The above mechanisms deal with simultaneous updates due to
user interactions being faster than remote feedback. However,
there are also potential race conditions that can occur within a
single user interaction once one adopts a more data-driven
approach to code.

As an example consider the extras calculator for a low-cost
airline. The user selects extras from the drop down lists, then an
API returns the cost of the item in Euro, which is then converted
into a chosen local currency and the values added up to give an
overall total.

	
 	

Fig 10 flight extras calculator

Assume there is an AAV 'rate' for the current exchange rate, an
array of AAVs euro[0-3] for the costs in euros (as returned by
an AJAX call to the API), AAVs local[0-3] for the converted
costs and an AAV local_total for the total cost. For the sake
of the example, we assume the calculation of the total cost is done
remotely using an AJAX API. If coded in a purely data flow
manner we would register an onChange callback for each euro[]
AAV which would update the corresponding local[] AAV, but
also a callback on the rate AAV that would update all the
local[] AAVs. Finally an onChange callback on each
local[] AAV would initiates the calculation of the
local_total using setJSON.

Now imagine what happens when the user changes the local
currency. The rate changes which then updates each local[]
AAV in turn. As each local[] is updated its onChange event is
triggered and a setJSON call made on the local_total AAV;
that is, local_total is set once for each extra.

Although each asynchronous set will cancel the previous one, this
will only be after a request has been sent to the server using up
bandwidth, causing local delays while the call is initiated, and
wasting server time starting to service the API call.

While this is a little contrived to make a simple example, the
general problem of multiple paths from the same initial event can
occur in practice [8]. With AAV, the user never sees an
inconsistent result, because previous asynchronous sets are
aborted. However, as we see, it can lead to wasted effort.

If this is likely to be a problem, the AAVs can be set to wait a
short period (typically 10ms) before actually starting their
asynchronous setters. Because this is on a timer it is not actually
initiated until all the updates directly due to the user interaction or
current callback are complete. If during this period a new value is
set the old setter is never started.

This timer-based mechanism does not remove every case of
multipath dependencies, but does not require a full declarative
notation that would be necessary for a complete runtime
dependency analysis.

4.6 First Class Event Model
A number of the classes in the framework have one or more
events to which callbacks can be added. This is common in user
interface toolkits, for example, in Java one adds a callback for
mouse events with:

component.addMouseListener(myListeneer)

or in jQuery, to monitor changes to a text component:

textComponent.change(myHandler)

Under the hood these are typically managed by some form of
delegate object which has handlers added to it and then runs these
when a relevant event is triggered.

In AAV the equivalent delegate object is made directly available
as an object property. If var is an AAV var.onChange is an
EventPort object. An EventPort has just three methods:
attach(handler) and remove(handler) to add/remove a
handler from the list of things to run when the event occurs, and
trigger(value) which is called when the event occurs to run
the handlers for the event.

This means that in the application code rather than
var.onChange(callback), as in other frameworks, instead one
writes var.onChange.attach(callback). This is slightly
more verbose, but means that the event port is a first class object,
allowing a level of decoupling between when things happen
(events) and how values are updated (status).

5. DISCUSSION
5.1 Revisiting the Design Goals
In the introduction the broad design goals of AAV were
described: flexibility and simplicity informed by theoretical
understanding. These have worked together to create the current
framework. The design was driven by practical needs, only
adding features as they were needed and use cases arose; thus
leading to simplicity/parsimony. However, this could easily end
up with an ad hoc solution, which failed to generalise or broke in
unexpected ways. It is the theoretical foundations that help avoid
these problems, not least in dealing with potential race conditions
in generic, yet flexible, ways. The flexibility goal is also crucial,
again informed by theoretical considerations. Rather than

creating a notation or language that 'solves' the problem of in-flux
indicators, instead AAV provide a mechanism that supports the
developer in solving these problems. Because the developer is
still in control, unnecessary complexity can be avoided.
Furthermore the developer is able to address new problems, not
foreseen in the framework, and by so doing suggest new features.

5.2 Initialisation and Shadow Variables
One example of this is the use of 'shadow variables'. In the
examples in section 3, the query variable was replaced by an
AAV query_var, its value can be accessed as
query_var.get(). However, in the actual code in most cases
the original variable was 'left behind' in the code and its value set
by an onChange handler on the corresponding AAV. This was
partly due to incremental change of the code to use AAV; by
having the shadow variable the rest of the code did not need to be
altered and could still access the shadow variable.

However, these shadow variables tend to be particularly useful
during initialisation. The AAV can be given an initial value when
it is created, but sometimes the right initial value is not known
when the variable is created, or sometimes variables are
reinitialised, for example, when a new data store is selected. In
some cases the AAV can simply be set using its set() method
which will call the corresponding onChange handlers. However,
in other cases this default behaviour is not wanted and the shadow
variable is set directly without setting the corresponding AAV,
hence avoiding running onChange handlers. These issues of
initialisation were also encountered in the Garnet/Amulet family
of toolkits [2].

This common use case suggest that some form of setSilent
method might be useful and/or some means to automatically bind
shadow variables to AAVs. However, in the spirit of parsimony
this will be added only if it reoccurs sufficiently often. It is, of
course, possible to put off this framework design decision because
of the flexibility of the framework to allow such workarounds.

5.3 Callback vs. Procedural Coding
AAVs encourage a callback style of coding. This is common in
many open-source platforms that allow plug-ins (e.g., WordPress
filters and actions), as well as being normal in interface toolkits
and UIDEs. One feature that is common in callback-based plug-in
APIs is some form of priority, so that when there are multiple
handlers for the same event/action the developer has some control
over the order of execution. In contrast, most UI toolkits adopt a
simpler last-in–first-served or first-in–first-served model, perhaps
because multiple callbacks are relatively rare.. As AAV have
been developed primarily for UI development, they so far adopt a
default first-in–first-served model.

While event-based code is common in many practical
applications, most programming courses start with a more
procedural style of coding. Perhaps because of this, jQuery
provides a promise interface and deferred objects that
encapsulate asynchronous actions (including AJAX calls), and
include a then method, which allows asynchronous actions to be
chained together in a procedural manner.

In code developed using AAV both styles of coding have been
seen. In some cases an AAV is declared and immediately an
onChange handler is added with code for everything that must
happen after a change; a more procedural "after the variable is
changed then do this". In other places an AAV, say x, is declared,

and then somewhere else in the code, typically where a user
interface element or another AAV depends x, an onChange
handler is added to x; a more data driven "I depend on x".

In current code these different uses of AAVs and also uses of
jQuery sit side by side. It may be that slight variants of the
existing AAV primitives would suit these styles better, or would
enable close integration with jQuery promises.

5.4 Declarative Notation and Structured Data
One possibility would be to include a form of mini-language or
more structured way of declaratively declaring variable
interdependencies. This would be far closer to the form of older
UI toolkits such as Garnet [2], or recent declarative notations such
as Arrowlets [23]. There would be advantages to this approach,
for example, in better detecting and dealing with multipath
dependencies as discussed in section 4.5.

However, if these were added to AAVs it would be in the form of
an optional mechanism in the spirit of supporting the developer,
not an all-encompassing mechanism. For example, we have
experimented with dependency declarations of the form:

new Dependency(in_bind, out_bind, engine)

Where in_bind and out_bind are bindings of names to AAVs
and engine is an object that can initiate asynchronous activity
when given a binding of names to (raw) values (matching the
names in in_bind) and when it returns invokes a callback with a
corresponding binding of out values. The dependency framework
then registers appropriate onChange handlers for each input AAV
to invoke the engine, and sets AAVs when it completes. This is
promising, but as yet unclear whether useful enough to add.

Similarly, it may be useful to be able to add callbacks to parts of
structured objects without making each part a separate AAV, for
example, if person is an AAV to be able to refer to
person.part('address. number').onChange.

6. CONCLUSION
Various authors have noted problems with AJAX-based interfaces
and their potential to create unusable interfaces [11,21,22,24].
The AAV framework does not prevent UI disasters in AJAX-
based web interfaces, but hopefully makes it easier to do certain
things right. In the case of the QbB interface this meant that a
mass of bespoke AJAX response handlers was replaced by a more
declarative description of what needed to be updated when
changes occurred. Whereas in the pre-AAV code only the query
pane showed a "loading" indicator, after introducing AAV adding
these became simple enough that any part of the interface that can
potentially be waiting for update now shows an appropriate
indicator.

In some ways the differences between AAVs and more traditional
active variables are minor, in most part simply an extra
onChanging event. However, as we have seen, allowing
asynchronous updates creates the potential for various race
conditions that need to be dealt with carefully to avoid
inconsistencies in the interface. AAVs support the programmer in
managing these, and so ultimately improving the user experience.

Finally, it is worth returning to the design goals and the way
AAVs have been designed to support rather than take over the
developer’s job. This has allowed an incremental approach to
development that is more likely to lead to a usable and useful
framework.

7. REFERENCES
[1] Bizer, C., Heath, T. and Berners-Lee, T. 2009. Linked data –

the story so far. Int. J. Semantic Web Inf. Syst., 5, 3, 1–22.

[2] Bradley T. Vander Zanden, Richard Halterman, Brad A.
Myers, Rich McDaniel, Rob Miller, Pedro Szekely, Dario A.
Giuse, and David Kosbie. 2001. Lessons learned about one-
way, dataflow constraints in the Garnet and Amulet graphical
toolkits. ACM Trans. Program. Lang. Syst. 23, 6 (November
2001), 776-796. DOI=10.1145/506315.506318

[3] Clarke, G. (2011). Google plan to kill Javascript with Dart,
fight off Apple. The Register, dated 14th September 2011,
accessed December 2011. http://www.theregister.co.uk/
2011/09/14/google_project_kill_javascript/

[4] A. Dix (1994). Que sera sera - The problem of the future
perfect in open and cooperative systems. Proc. HCI'94:
People and Computers IX, Eds. G. Cockton, S. W. Draper
and G. R. S. Weir. Glasgow, Cambridge University Press.
397-408. http://www.hcibook.com/alan/papers/loop-HCI94/

[5] A. J. Dix (1994). Seven Years on, the Myth Continues.
RR9405, University of Huddersfield.
http://www.hcibook.com/alan /papers/myth95/

[6] A. Dix and A. Patrick (1994). Query By Browsing.
Proceedings of IDS'94: The 2nd International Workshop on
User Interfaces to Databases, Ed. P. Sawyer. Lancaster, UK,
Springer Verlag. 236-248.

[7] Dix, A. and Abowd, G. (1996). Modelling status and event
behaviour of interactive systems. Software Engineering
Journal, 11, 6, 334-346.

[8] A. Dix and G. Abowd (1996). Delays and Temporal
Incoherence Due to Mediated Status-Status Mappings.
SIGCHI Bulletin, 28, 2, 47-49.

[9] A. Dix, R. Beale and A. Wood (2000). Architectures to make
Simple Visualisations using Simple Systems. In Proc.
AVI2000, ACM, 51–60.

[10] A. Dix (2007). Network-Based Interaction. Chapter 14.
Human-Computer Interaction Handbook (2nd ed.) , eds. A.
Sears and J. Jacko. CRC Press, 2007.

[11] Dix, A. and Cowen L. (2007). ‘HCI 2.0? Usability meets
Web 2.0’. Panel position paper. Proc. HCI2007, Vol. 2 ,
British Computer Society.

[12] Paul Dourish. 1996. Consistency guarantees: exploiting
application semantics for consistency management in a
collaboration toolkit. In Proc. CSCW '96, ACM, 268-277.
DOI=10.1145/240080.240300

[13] C. A. Ellis and S. J. Gibbs (1989). Concurrency control in
groupware systems. Proceedings of 1989 ACM SIGMOD
International Conference on Management of Data, SIGMOD
Record, 18, 2, 399-407.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
patterns: elements of reusable object-oriented software.
Addison-Wesley Professional, 1995.

[15] The Go programming language. Google. retrieved 30 Sept
2011. http://golang.org/

[16] Greenberg, S, and Marwood, D. (1994). Real-Time
Groupware as a Distributed System: Concurrency Control
and its Effect on the Interface, Proc. CSCW’94, ACM, 207–
217, DOI=10.1145/192844.193011

[17] Gutwin, C., Lippold, M. and Graham., N. (2011). Real-time
groupware in the browser: testing the performance of web-
based networking. In Proc. CSCW '11. ACM, 167-176.
DOI=10.1145/1958824.1958850

[18] Krasner, G. and Pope, S. (1988). A cookbook for using the
model-view-controller user interface paradigm in Smalltalk-
80. JOOP, 1(3).

[19] McGuffin, L. and Olson, G. (1992). ShrEdit: A Shared
Electronic Workspace, CSMIL Technical Report, Cognitive
Science and Machine Intelligence Laboratory, University of
Michigan, 1992.

[20] Meyerovich, L., Guha, A., Baskin, J., Cooper, G., Greenberg,
M., Bromfield, M. and Krishnamurthi, S. (2009). Flapjax: A
Programming Language for Ajax Applications, OOPSLA’09,
October 25–29, 2009

[21] Nielsen, J. (2007). Web 2.0 'Neglecting good design. BBC
News. 14 May 2007 Available at:
http://news.bbc.co.uk/1/hi/technology/6653119.stm

[22] Nielsen', J. (2007). Web 2.0 Can Be Dangerous... , Jakob
Nielsen's Alertbox, December 17, 2007. accessed Dec 2011,
http://www.useit.com/alertbox/web-2.html

[23] Khoo Y P, Hicks, M., Foster , J. and Sazawal, V. (2008).
Directing JavaScript with Arrows (Functional Pearl),
Technical Report CS-TR-4923, Dept. of Computer Science,
University of Maryland, August 2008.

[24] Pilgrim, C. 2008. Improving the usability of web 2.0
applications. In Proceedings of the nineteenth ACM
conference on Hypertext and hypermedia (HT '08). ACM,
NY, USA, 239-240. DOI=10.1145/1379092.1379144

[25] Prud'hommeaux, E. and Seaborne, A. (2008). SPARQL
Query Language for RDF. W3C Recommendation 15.
January 2008. http://www.w3.org/TR/rdf-sparql-query/

[26] Quinlan, J. (1986). Induction of decision trees. Machine
Learning, 1(1).

[27] Greg Rosenberg. 2007. A look into the interaction design of
the new Yahoo! mail...: and the pros and cons of AJAX.
interactions 14, 2 (March 2007), 33-34.
DOI=10.1145/1229863.1229882

[28] B. Shneiderman. 1983. Direct Manipulation: A Step Beyond
Programming Languages. IEEE Computer 16, 8 (August
1983), 57-69. DOI=10.1109/MC.1983.1654471
http://dx.doi.org/10.1109/MC.1983.1654471

[29] M. J. Stefik, D. G. Bobrow, and K. M. Kahn. 1986.
Integrating Access-Oriented Programming into a
Multiparadigm Environment. IEEE Softw. 3, 1 (January
1986), 10-18. DOI=10.1109/MS.1986.232428

[30] Tonkin, E. (2006). AJAX And Usability Issues, UKOLN.
Dated 4th March 2006, Accessed 14 Dec 2011.
http://www.ukoln.ac.uk/qa-
focus/documents/briefings/briefing-94/html/

