User Interface Overloading: A Novel
Approach for Handheld Device Text Input

James Allan Hudson, Alan Dix & Alan Parkes

Computing Department, Lancaster University, Bailrigg,
Lancaster LA1 4YR, UK

Tel: +44 1524 592326
Emalil: j.a.hudson@lancs.ac.uk, {app, dixa} @comp.lancs.ac.uk

Text input with a PDA is not as easy as it should be, especially when
compared to a desktop set up with a standard keyboard. The abundance of
attempted solutions to the text input problem for mobile devices provides
evidence of the difficulties, and suggests the need for more imaginative
approaches. We propose a novel gesture driven layer interaction model
using animated transparent overlays, which integrates agreeably with
common windowing models.

Keywords: text input, PDA, transparent layers, visual overloading.

1 Introduction

The major difficulty with designing graphical interfaces for small touch screen
displays is a regular text document has to be divided into very small pages, making
comprehension awkward. An additional problem is control elements take up
precious display area, making the view of a document ever smaller. One approach is
to reduce the size or number of these controls, to free up usable display area, however
this affects the usability of an interface. The problem is in maintaining a reasonable
sized interface without affecting usability.

This paper considers these problems associated with handheld text input using
touch screen graphical interfaces. It proposes the application of superimposed
animated graphical layering, which we refer to as visual overloading, combined with
gestural interaction as illustrated by Belge et al. [1993], Lokuge & Suguru [1995],
Meyer [1995] and Silvers [1995] to produce a novel interaction model called User
Interface Overloading or UIO [Hudson & Parkes 2003b]. We argue that this approach
can help to address the problems of touch screen text input, especially for devices
with limited display real estate.

2 James Allan Hudson, Alan Dix & Alan Parkes

The difficulty in constructing good solutions to interaction for handheld and
portable devices with small graphical display has spawned much interest from
researchers specializing in multi modal and tangible forms of interaction, however
UI10 suggests much more can be made of these small graphical displays. This paper
examines some of the popular approaches to text input, some of these being currently
under development. To set the benefits of the UIO model in suitable perspective, the
paper then goes on to identify and discuss the individual features and difficulties of
the PDA text input problem as demonstrated by Kamba et al. [1996], Masui [1998],
MacKenzie et al. [1999] and MacKenzie & Zhang [1999]. We then introduce our
model. Finally, we examine an implementation of a UIO text input application.

2 Handheld Text Input

Many proposed solutions to the handheld text input problem fail to acknowledge the
true obstacles of preserving portability and compactness, ease and convenience of
interaction and the deft conservation of screen real estate. Before these factors are
addressed and in order to illustrate the problem of text input for handheld devices,
this section outlines some of the more successful approaches, this section critically
examines a number of text input solutions.

Plug-in keyboards or the very appealing laser projected variety, such as iBiz
virtual laser keyboard would seem to offer a solution to the problem of easily entering
text on small devices. However, this could likened to buying an anchor to make your
PDA behave like a desktop. The integration of a full size keyboard into the design
compromises the necessary limit on size and ergonomics of use, not to mention the
portability of the device, by requiring a flat surface.

A different approach is the chorded keyboard, more usefully implemented for
handhelds as a device held in the hand. Here there is a significant learning overhead
due to the user having to learn key combinations to select each letter or number,
however this approach does outstrip all one handed text input rates at 50wpm. A
downside to this approach is with current implementations the need to hold a chorded
keyboard in one hand, does affect the ergonomics of interaction. The obvious
solution would be to integrate the keyboard into the device itself. Similar to the
chorded keyboard is the T9 predictive text found on many mobile phones. Entering
a series of keys will generate a list of possible words. This approach does however
pose difficulties, if the word is not found in the dictionary or the suggested word is
at the bottom of the list of suggestions.

Clip on keyboards may seem to provide a usable text entry facility for small
devices, at least on physical grounds. However, they do add bulk, and thus adversely
affect the trade-off between size, portability and practicality. An alternative to the
clip on is the overlay keyboard. Though these do not increase the size of the device,
they do have usability implications. The overlay is essentially no different from a soft
keyboard (discussed below), and actually is a very expensive sticker that permanently
renders the utility of a portion of the display for text input only, restricting the use of
an already limited resource.

The soft keyboard is not really too different from the clip-on keyboard, except
it is implemented as a graphical panel of buttons rather than a physical sticker. The

User Interface Overloading: A Novel Approach for Handheld Device Text Input 3

soft keyboard has the added hindrance of consuming screen display area, as does the
overlay approach. However, the soft keyboard does permit the user to free-up display
area when required.

The soft keyboard seems to be the most commonly accepted solution [see
Kamba et al. 1996; Kolsch & Turk 2002; MacKenzie et al. 1999; MacKenzie &
Zhang 1999]. However, it is a solution that is greedy in terms of screen area. Two
examples can be used to illustrate the trade off between redundancy, ergonomics
of use and visible display. Firstly, a full screen keyboard offers direct manual
interaction due to larger keys and a capacity for more keys but at the expense of
display real estate. Secondly, the standard split screen keyboard already limited in
size, sacrifices redundant controls to permit larger keys and to make more visible
display available, yet its small size results in the need to use an additional device,
such as a stylus, which results in an approach that is difficult to use dexterously with
the fingers.

One approach based on the standard keyboard and akin to one we propose is one
that uses a static soft keyboard placed in the background of the display text. A letter is
selected by tapping the appropriate region in the background. This solution permits
manual input and does preserve some screen real estate. However, the number of
available controls and hence redundancy is limited due to the necessary larger size
of the controls, required to make the keys legible through the inputted text. This limit
on the number of controls necessitates an awkward need to explicitly switch modes
for numbers, punctuation and other lesser used keys. Another drawback is the slight
overhead in becoming accustomed to the novel layout.

A lot of effort has been expended to improve the soft keyboard approach,
however these attempts are still subject to the drawbacks already describe with this
approach, moreover they are subject to a learning overhead imposed by remodelling
the keyboard layout. On the Unistroke keyboard [Zhai et al. 2000; Mankoff &
Abowd 1998] all letters are equidistant, thus eliminating excessive key homing
distances. The Metropolis keyboard [Zhai et al. 2000] is another optimised soft
keyboard layout, statistically optimised for single finger input, improving efficiency
by placing frequently used keys near the centre of the keyboard. Both approaches
can be effective, but both impose a learning overhead due to a new keyboard layout.
The user must expend considerable effort to become familiar with the keyboard for
relatively slim rewards, not to mention the overhead inherent with soft keyboards,
such as the consumption of screen real estate.

Handwriting recognition was for some time the focus of PDA text input
solutions. However, evaluation revealed that gesture recognition for text input is
balky and slower, some 25wpm at best, than that of, say, other less sophisticated
approaches, such as the soft keyboard [Dix et al. 1998, p.6]. Problems with
handwriting and similar approaches such as 2D gesture interaction, for example
Graffiti, is one of learnability, slow interaction and skill acquisition. The obvious
problem with handwritten input is the need and time expended to write each letter of
aword, whether this is consecutively or all at once, the user must still write the whole
thing out, whereas the keyboard solution requires merely the pressing of a button. A
problem originally addressed with the invention of the mechanical typewriter. In

4 James Allan Hudson, Alan Dix & Alan Parkes

addition to this difficulty, as with the standard soft keyboard, text input requires the
use of a stylus, thus occupying the user’s free hand (i.e. the need to hold the PDA)
when entering text. The learning curve of this approach is steep due to the need to
learn an alphabet of gestures and the saving in real estate is not so apparent, since
some approaches require a large input panel.

We now consider alternative, less well known, solutions to the problems of
text entry for small devices. One approach to PDA text input is the use of a mitten
outlined by Goldstein & Chincholle [1999]. Sensors in the hand units measure the
finger movements, while a smart system determine appropriate keystrokes.

This novel approach is an intriguing solution. The main problem is the need to
carry around a mitten that is nearly as big as the device itself. Finally, a mitten is
not so appealing to the user and the sensors on these devices can be bulky affecting
freedom of movement. Dynamic dialogues illustrated by Ward et al. [2000], when
applied to limited display size, are a very innovative data entry interface which
incorporates language modelling. The animations are driven by continuous two-
dimensional gestures, where the user selects strings of letters as they progress across
the screen. Letters with a higher probability of being found in a word are positioned
close to the centre line. Though the dynamic dialogue approach makes use of 2D
gestures, these are supported by affordance mechanisms and they have been kept
simple for standard interaction, making them readily learnable. Users achieve input
rates of between 20-34 words per minute, which is acceptable when compared with
typical one-finger keyboard touch screen typing of 20-30 words per minute [Sears
et al. 1993]. However, the input panel for text entry consumes around 65% of the
display, leaving as little as 15% remaining for the text field. The approach does not
improve on the constraints of limited display area or on text input rates. What it does
do is require the user to become familiar with a new technique for no extra benefit.

3 Evaluation of Handheld Text I nput

The major problem with many text input solutions is the lack of investigation into the
true problem of handheld device text input. The important thing is not the mechanism
for inputting text in itself but rather the consideration of constraints such as on the
available size of a text input panel and free display area.

We next discuss the constraints on the design of text input interfaces for
handheld devices, in order to derive several requirements and to set the introduction
and discussion of the UI0O model in a suitable perspective.

4 Layout Constraintsand Ease of Use

The layout of a text input mechanism is subject to some physical constraints which
affect usability. In order to free up as much screen display as possible, input
dialogues are reduced in size, which reduces the size of individual keys, making
them more difficult to select. Increasing the number or redundancy of controls
limits the space available. The size of keys is also subject to the population of
keys on the keyboard. Lots of keys means less space per key, or a smaller input
text panel. Alternatively, to minimise the display area used by the keyboard and
maintain a reasonable sized key, designers resort to using menus or modes. Seldom

User Interface Overloading: A Novel Approach for Handheld Device Text Input 5

Small text panel permits a larger input
dialogue, facilitating larger keys or a
larger population of smaller controls.

A large text panel is desirable, though its overall size
is still restricted by the necessary size of the keyboard
and does reduce the size of individual keys

Text Panel

Keyboard Panel

Text Panel Text Panel
Text Panel
Keyboard Panel Keyboard Panel
Keyboard Panel

Increasing the population of controls further reduces key
A larger keyboard means a larger distance size, making keys difficult to select, thus slowing input
for the hand to travel, reducing input rates, rates, however this is compensated by the reduced size
however, larger keys compensate by being lowering the distance travelled by the hand.

easier to select.

Figure 1: The possible combinations of text input panel, the constraints between input rates, size of keys,
number or keys with the remaining available display and the size of text input dialogue and display.

used commands inevitably feature in sub-menus, which leads to a slow and awkward
interaction approach [Kamba et al. 1996]. These constraints are subject to the
constraints defined in Fitts” law, a large dialogue is subject to a time overhead from
increased hand travel while smaller keys take up less space and merit a reduced
hand travel, yet may incur a time overhead due to a fine motor control requirement
in selecting a key. Overly small keys result in either unacceptable increases in error
rates or unreasonably slow input rates for text input, due to awkwardness of selecting
a key accurately. This suggests a larger keyboard should be favoured.

4.1 Unnecessary I nteraction Aids

Pointers, such as a stylus, clip on keyboards and data gloves, impede device usability.
To interact with the device the user must either don the interaction accessory or, say,
pick up a stylus, which in the case of many portable devices, ties up both hands
[Goldstein & Chincholle 1999].

4.2 Learning and Skill Acquisition Overhead

Many small device text input approaches are not easily learned, consider the work by
MacKenzie et al. [1999; MacKenzie & Zhang 1999]. The use of 2D alphanumeric
gestures is a good example of such an approach. Here the user expends time to learn
numerous gestures and the different contexts they can be used in.

5 Design Requirements

Drawing from the evaluation of text input solutions a definition of the design
requirements can be constructed, permitting the development of a fresh and fitting

6 James Allan Hudson, Alan Dix & Alan Parkes

solution, rather than, further optimising on approaches that fail to address relevant
issues such as screen real estate or convenience of use, for example the over
engineered optimisations of the conventional soft keyboards

Consideration of the contributing factors in the design of interaction models for
handheld and mobile devices leads to the following design requirements:

o Larger keys for manual interaction should be favoured over interaction aids.
For example styluses, obstruct the freedom of a hand, posing a hindrance to
handheld interaction.

e We must seek a good balance between redundancy in the number of visible
input device features and availability of display area.

e The device must reflect an effective trade-off between display area, size of
elements in the input panel, and usability.

e The approach must be easy to learn to use and understand or there must be a
justifiable benefit for any learning overhead, as with the chorded approach.

In view of the above requirements, we now discuss our proposed approach to
the problem of text input for small devices.

6 User Interface Overloading

Here we introduce a novel system of interaction called user interface overloading,
whereby a user can selectively interact with multiplexed or Visually Overloaded
layers of transparent controls with the use of 2D gestures.

Transparency is commonly used to optimize screen area, which can often be
consumed by menu or status dialogues. The aim is to provide more visual clues
[Bier et al. 1994], in the hope the user will be less likely to lose focus of their current
activity. Bartlett [1992] and Harrison et al. [1995] consider that the conventional
approach of using a layer of transparency to display a menu is done at the cost
of obscuring whatever is in the background (Figure 2 right). This is not actually
visual overloading, but rather a compromise between two images competing for
limited display area. In fact, an underpinning feature of the scheme described by
Harrison et al. [1995; Harrison & Vicente 1996] is the investigation of levels of
transparency to optimize this compromise.

Visual overloading is different from the use of static layered transparencies.
Rendering a transparent animated image or a wiggling panel on a static background,
illustrated by Belge et al. [1993], Silvers [1995] and Cox et al. [1998], will visually
multiplex or visually overload the overlapping images (see Figure 3). The upshot
is a layer of controls appear to float over the interface without interfering with the
legibility of the background.

The introduction of gestural input [Meyer 1995] is partly a consequence of
implementing visual overloading, since it is necessary to resolve the issue of layer
interaction. There is nothing new with gesture activated controls, the concept was
first introduced by Kurtenbach & Buxton [1994] with marking menus. However,
this approach did only use simple gradient stokes or marks, whereas UI0 also makes

User Interface Overloading: A Novel Approach for Handheld Device Text Input 7

[Eie | Edt vew insert Format Toos Table Window | Ele | Edt Vew Inset Fomst Toos Tabe Wndow bl
0O new coiaN ol oy D e i f o

I oen culso

Normal + 18
cues |7 E2=|E
C:\Document

A3

- |-
|

Figure 2: The benefi ts of transparent over conventional solid menus. (Left) the solid menu conceals
the background image. (Right) a transparent menu obscures the background image, without completely
concealing it.

Figure3: Threeframesfrom aulO mobile phoneinterface with overloaded icons, showing where gestures
are executed. The envelope icon isfor the messaging function and ‘ Register’ for the call register function.
For examplea‘C' starting over the envelope will go to acompose dialogue. Please note visual overloading
is diffi cult to present in print.

use of more sophisticated gestures. The underlying principle of marking menus is to
facilitate novice users with menus while offering experts a short cut of remembering
and drawing the appropriate mark without waiting for the menu to appear. What
makes our UIO interaction model novel and where it differs significantly is the use
of selective layer interaction. We now discuss some of the features and properties of
ulo.

The approach incorporates 2D mouse gestures to activate commands associated
with a control (see Figure 3), offering the necessary additional context required
beyond that of the restricted point and click approach. This enables the user to
benefit from the added properties associated with an overloaded control by enabling
the selective activation of a specific function related to a control contained in the
layers.

UI0 permits the intensive population of a display through the layering of control
elements. This we achieve without compromise in size of the inputted text panel
or to the size of control elements described by Hudson & Parkes [2003a]. An
advantage that effectively gets round the constraints described earlier, (see Figure 1)
by permitting background and subsequent layers to occupy the same screen real
estate.

Another benefit is the availability of real estate permitting larger controls, which
are easier to locate, improving input rates and facilitate manual interaction.

8 James Allan Hudson, Alan Dix & Alan Parkes

Display of underlying work context

Transparent Layers

AT gesture to activate the control associated with
the layer containing the triangle

Figure 4: A schematic depiction of an overloaded button or icon. By executing an appropriate gesture,
over the collection of layered shapes, such asa ‘D’ for the diamond or a‘T’ for the triangle, etc., a cal
can be made to the action associated with the desired layer.

Additional layers of

Keyboard layered on top of the controls.

inputted text

Text Panel
ol
e g
Keyboard Panel

Figure 5: The benefi ts of layering a keyboard over the text panel, essentially doubling their size and
breaking the conventional physical constraints (see Figure 1) associated with user interface design. It is
aso clear additional layers of controls can be added.

User Interface Overloading: A Novel Approach for Handheld Device Text Input 9

diipm)

By overloading the play icon with
five gesture we save on the space

The five controls necessary to taken up by five icons

operate a media device.

NN —

Rewind Pause Play Stop Forward

Figure 6: How redl estate can be salvaged, by associating gestures with an icon rather than using ever
more control elements.

The constraints of this approach are that elements lose coherence gradually
or the interface essentially becomes visually noisy as layers are added, however
carefully chosen layers permit a good number of controls before this constraint takes
effect.

It is clear U10 eliminates the constraints between the size of the display and the
input dialogue. In addition the redundancy of controls can be increased in a new
way, by overloading the functionality of a control with a selection of gestures (see
Figure 6) while avoiding the use of obtrusive context menus.

Expressed in a different way, we can limit population of these controls by
overloading their functionality with gesture interaction offering significant savings
in screen real estate for handheld devices and other touch screen interfaces.

A problem of gesture interaction is the steep learning curve, because of the
need to be familiar with a multitude of gestures and their contexts. An addition
to the UIO approach, to support learnability is to introduce a mechanism where
an easily remembered ‘?” gesture will prompt the interface to display the gestures
associated with a control or area. In this way the user can become familiar with the
system gradually, summoning help in context and when needed. This blossom help
(described in Figure 7) also functions as a mechanism to support goal navigation and
exploration. This help approach is an elaboration on the marking menu reported by
Kurtenbach & Buxton [1994]. To improve the usability a function can be activated
using the correct gesture or using a text label as a buttons. In addition there is no
reason why this help system could not include permitting a straight-line mark from
the icon to the label, as with a marking menu, however this will only work with less
than eight options and would fail to be useful with layers of controls.

Essentially, a UIO control is a making menu with a transparent graphical
image, which means UIO benefits from the properties of marking menus. As with
marking menu, UIO requires a procedural memory component, suggesting this style
of interaction has a strong cognitive salience.

10 James Allan Hudson, Alan Dix & Alan Parkes

Holding the pointer down over The user can either execute the
a label will prompt for a more required gesture, click on the
detail description of the p|ay label, or draw a mark as in a
function making menu to execute the

desired function

—_—
Rewind ‘$ W Forward

Sto

Pause /\ / P
Executing a question mark over
the control will prompt the system

to display the gestures associated
with that control or area

Figure 7: How learnability is supported with the use of help dialogues that ‘blossom’ whena‘? gesture
is executed over acontrol or area

Underlying conventional interface Mouse gestures are
intercepted by the
Overloaded Layer
where they are
handled.

Mouse clicks pass straight
through the Overloaded
Layer where they are
handled by the
conventional interface.

Figure 8: How this approach can be seamlessly incorporated into aconventional point and click interface.
Mouse clicks are not intercepted by the Overloaded Layer and pass straight through, where they are
handled by the conventional interface, whereas gestures are handled by the Overloaded layer.

A benefit of UIO is that it integrates seamlessly with WIMPS offering extended
functionality by intercepting gestures but allowing standard point and click
interaction to pass through the layers where they are handled in a conventional
way (see Figure 8). An obvious comment is user interface overloading may interfere
with drawing packages and text selection. The solution to this is the same used
by Sensiva’s Symbol Commander, conflicts are avoided with a small time delay to
switch modes or simply using the right mouse key to activate gesture input.

There are some downsides to the UIO approach. As with keyboard shortcuts,
by letter association, ambiguity can lead to controls possessing the same gesture.
This can be overcome with good design either by planning letter associations or
incorporating an options dialogue for selecting between commands with the same
gesture.

User Interface Overloading: A Novel Approach for Handheld Device Text Input 11

SBDIEF AB@F ABORR

Here is the Here 1s the Hére is the
Oyerloa OieHoddedic é

text lay MNO text layer HJLQ
PQR@VWXYZ PQ UWXYZ PQ? XYL

Figure9: Three framesfrom ascreen shot of the VODKA approach, amobile keyboard layer over alayer
of text. Although, it cannot be seen in print, the layer of letters, when in motion, stand out against the
background and appears alot more coherent.

In practice we found that multiple layers of animated transparent elements were
too visually noisy, suggesting only one layer for this type of icon. We did find
wiggling or moving non-animated panels [Belge et al. 1993; Lokuge & Suguru 1995]
can support in practice up to four layers. We did find that overloaded transparencies
work with very low levels of transparencies, lower than the 30% opacity for static
images suggested by Harrison & Vicente [1996].

Other restrictions exist that can be avoided with good design are, the choice of
colours conflicting with the background, and in the poor choice of animations which
may result in difficulties selecting moving elements or distinguishing between layers.
However, this is no more an overhead than in designing graphics for a standard
interface or website. Another restriction is animated controls can be obscured on
a moving background, such as a media clip.

We now examine an implementation of a user interface overloading text input
application.

7 Proposed Solution

The user interface overloading technique was implemented in a handheld text input
application and evaluated with respect to the specified requirements as follows. Our
proposed approach to text entry on small devices the visually overloaded 2D gesture
keyboard Application or VODKA utilises the UIO technique. To test the approach a
prototype was implemented on an Ipag 3600 using the Java virtual machine. The
graphics were produced using a drawing application. The gesture engine was an
optimised version of Javastroke, ported from the open source gesture recognition
engine Libstroke.

The implementation of VODKA incorporated a visually overloaded 1SO
keyboard layout (standard on mobile phones) and a number pad layered over the
text. Gestures were incorporated using simple gradient strokes to select a letter
and simple meaningful gestures to access other functions, such as numbers and
uppercase letters.

12 James Allan Hudson, Alan Dix & Alan Parkes

& m NO

. N | I\« Vi

Figure 10: In this example aletter is selected by drawing a gradient stroke that begins over the button.
The green dots indicate where the gesture must start.

To operate the keyboard (see Figure 10) the user makes very simple gradient
gestures, as described by Kurtenbach & Buxton [1994]. To select a letter, a gradient
stroke that starts over the selected button is performed. The centre point of a button
is indicated with the green dot. The angle of a gesture supplies the context indicating
which element is being selected. ‘L’ would be selected with a right terminating
gesture, as above, while ‘K’ would be selected with a vertical up or downward
stroke. To improve usability the ‘space’ character is easily selected with a ‘right-
dash’ gesture, that can be executed anywhere on the display, similarly a delete
command is selected with a global ‘left-dash’.

To access lesser used functions other than basic text input, the approach uses
more elaborate gestures such as selecting the number ‘5’ with a meaningful and
easily associated ‘n’ gesture.

Other options are, text can be cleared from the screen with a ‘C’ gesture and a
capital can be entered by drawing a ‘U’ for uppercase after the desired letter. The
need to learn these associations does pose a learning overhead, however they are
easily learned using the Blossom mechanism (Figure 7). Initially, this use of symbols
is no less awkward than selecting a mode or menu option, however as the operation
becomes familiar, it ceases to be as obtrusive as the other approaches. Point and
click interaction is left alone to demonstrate that the approach could incorporate the
T9 approach and could still use standard text interaction, such as with text editing in
conventional graphical interfaces.

8 Evaluation

The UIO approach leads to several benefits. The layering of controls increased
the size and available population of controls while permitting the largest of text
panel. This permits manual interaction obviating the need for a stylus improving
the usability of the device. Gestures further reduced the outlay of screen real estate
that would be necessary to provide a control for each function. The marking menu
style of interaction for regular text input made VODKA simple to use and easily
understood. The gradient gestures found in marking menu interaction for simple text
input are trivial to parse, with error rates no worse than point and click approaches
[Kurtenbach & Buxton 1994]. The use of gestures for more elaborate interaction
made it simple to access modes such as capital letters and numbers. The use of
Blossom help (Figure 7) offers a good solution to the problem of remembering the
associations for more sophisticated gestures, by providing a mechanism that can

User Interface Overloading: A Novel Approach for Handheld Device Text Input 13

be configured to passively reinforce these associations. Another example of the
usefulness of the blossom approach is in acquiring the skill for the execution of a
gesture, by assisting in learning the correct form for that gesture.

Viewed against our set of requirements VODKA does appear a suitable solution:

e There is no reliance on additional interaction aids, since the dialogue elements
are large enough to support manual operation.

e The approach reflects an effective combination of redundancy in input device
features and availability of display area.

e The approach provides an adequate trade-off between display area, size of
elements in the input panel, and usability, with an approach that circumvents
these constraints.

e Finally, the approach is easily understood and learned with a simplistic
interaction style. Moreover, any learning overhead in learning symbols is
arguably justified when weighed against the benefits.

As has been illustrated, our user interface overloading technique resolves the
text entry problem and goes a considerable way to satisfying the design requirements.

VODKA is not clearly a gesture input approach, especially for regular input,
since gradient gestures are no more difficult to learn and execute than pointing. So,
the UIO approach falls under neither point and click or gesture input. Therefore,
we decided to not compare it to gesture based input, since VODKA is more like
a keyboard than anything else. We decided to test against a qwerty layout, in the
hope this would offer a clear indication of the value of our approach when compared
with more successful and conventional approaches. We decided not to conduct a
longitudinal, (clearly a longer study would be the next step) since we wanted to
demonstrate the input rates achievable by a novice. We have avoided predictive text,
since it can be introduced to all forms of text input, including our model; our interest
is in raw input rates.

To test out approach fifteen subjects were used in a study, all with experience
in using the common mobile ISO alphabet keyboard and the qwerty layout, with
30 minutes experience with the VODKA text input approach. We tested the input rates
with VODKA and compared them against input rates on the same Ipaq device with a
qwerty layout. The average input rate for the qwerty was 27wpm. The average rate
for VODKA was 21wpm, with experienced users achieving an acceptable 28wpm.

The results were analysed using an ANOVA of the logarithm of the time spent.
Logarithmic analysis was chosen as the data is positive and skewed and most effects
were expected to be multiplicative. Because the data was paired differences between
the two trial texts were cancelled entirely by the differences between pairs (quotient
of raw data).

The VODKA input was slower than soft keyboard by a factor of only 1.11 (from
log mean of 0.104). The individual variation was high with one subject nearly
twice as slow. Taking into account the variation of the data we can say that at 99%
confidence VODKA is on average no slower than 1.21 times the rate of a normal soft
keyboard.

14 James Allan Hudson, Alan Dix & Alan Parkes

Given the novelty of the method for users and the need to further refine the
details of the interface this is an encouraging result and makes it a clearly acceptable
option where other considerations, such as screen real estate, are critical.

A number of negative comments were reported. The choice of animation
for the keyboard did receive some criticism; the frame rate was too quick and
the excessive motion made it difficult sometimes to locate the correct control.
However, this did appear to improve as the user became familiar with the approach.
Therefore, although, the interaction is trivial to understand, there was some difficulty
in acquiring the necessary skill, which is possibly due to the unfamiliar design, a bit
like using the mouse for the first time.

Finally, the design was to support single handed use, by supporting the device
in the palm and entering the gesture with a thumbnail, sadly the physical size of the
Ipag meant that only a few of the users could achieve this, however it is possible a
smaller device, such as a mobile phone could support this style of interaction.

9 Conclusion

This paper has illustrated the constraints on and issues relating to, the development
of text input for mobile and wearable devices, as illustrated by Dunlop & Crossan
[1999] and MacKenzie et al. [1999]. User interface overloading presents a viable
approach to screen real estate optimisation and touch screen interaction, offering
new twists on the constraints of developing handheld and public access interfaces
(see Figures 1 & 5). Solution to these problems and shortcomings of existing
schemes were introduced and discussed. A prototype of the solution, making use of
user interface overloading, was implemented and evaluated against a set of derived
requirements. It was argued that this prototype makes effective use of screen area,
yet preserves the portability of the device. The results clearly indicate the approach
is comparable with the better input methods available, moreover, the benefits, such
as savings in screen area make it a promising candidate, which is full of potential.

This paper has challenged the accepted perspective and assumptions of
graphical user interface design to develop this novel user interface overloading
model, which integrates agreeably with common windowing systems offering
effective, additional tools and functionality rather than the unrealistic proposition of
a replacement model or significant remodelling of accepted designs.

10 Further Work

Our current work involves investigating the application of our techniques to support
interaction for Databoards, public information kiosks, small devices, such as
wearable devices [Masui 1998] and control dashboards for augmented and virtual
reality interfaces. We are exploring the effectiveness of UIO itself, and seek to
improve touch screen interaction, among other things.

We also intend to explore the use of VODKA in a predictive text application.
Consider entering the specific first letter of a word and using a gesture to define
the length of a word, then tapping on successive groups of letters, (as with the
T9 dictionary), to generate a list of possibilities. Although, with VODKA it remains
possible to enter specific letters in order to refine to search.

User Interface Overloading: A Novel Approach for Handheld Device Text Input 15

There are some other aspects of UIO we wish to explore. We noticed
that users could perceive controls with indirect gaze making the model useful
in peripheral displays, adaptive systems [Hudson & Parkes 2003b; McGuffin &
Balakrishnan 2002] and designing interaction for the visually impaired, such as
macular degeneration. Adaptive displays could also benefit from the freedom to
place new items or reconfigure displays without upsetting the layout of controls.

Another property is, elements sharing the same motion appear grouped together,
suggesting this approach could be used to implement widely dispersed menu options
on a display without the necessary overhead of bounding them in borders, as is
usually required to suggest a group relationship.

Finally, we recognise that our future research will benefit from an investigation
into theories of perception. Such work may help us to minimise, and govern the
effects of, visual rivalry, perhaps by introducing 3D elements and dynamic shading.

References

Bartlett, J. [1992], Transparent Controls for Interactive Graphics, WRL Technical Note TN-
30, Digital Equipment Corporation.

Belge, M., Lokuge, I. & Rivers, D. [1993], Back to the Future: A Graphical Layering System
Inspired by Transparent Paper, in S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel &
T. White (eds.), INTERACT 93 and CHI’93 Conference Companion on Human Factors in
Computing Systems, ACM Press/IOS Press, pp.129-30.

Bier, E. A., Stone, M. C., Fishkin, K., Buxton, W. & Baudel, T. [1994], A Taxonomy
of See-through Tools, in B. Adelson, S. Dumais & J. Olson (eds.), Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems: Celebrating Interdependence
(CHI’94), ACM Press, pp.358—64.

Cox, S., Linford, P., Hill, W. & Johnston, R. [1998], Towards Speech Recognizer Assessment
Using a Human Reference Standard, Computer Speech and Language 12(4), 375-91.

Dix, A., Finlay, J., Abowd, G. & Beale, R. [1998], Human—-Computer Interaction, second
edition, Prentice—Hall Europe.

Dunlop, M. & Crossan, A. [1999], Dictionary Based Text Entry Method for Mobile Phones,
in S. Brewster & M. Dunlop (eds.), Proceedings of Second Workshop on Human Computer
Interaction with Mobile Devices, Springer-Verlag.

Goldstein, M. & Chincholle, D. [1999], The Finger-joint Gesture Wearable Keypad, in
S. Brewster & M. Dunlop (eds.), Proceedings of Second Workshop on Human Computer
Interaction with Mobile Devices, Springer-Verlag.

Harrison, B. & Vicente, K. [1996], An Experimental Evaluation of Transparent Menu Usage,
in M. J. Tauber, B. Nardi & G. C. van der Veer (eds.), Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems: Common Ground (CHI’96), ACM Press, pp.391—
8.

Harrison, B., Ishii, H., Vicente, K. & Buxton, W. [1995], Transparent Layered User
Interfaces: An Evaluation of a Display Design to Enhance Focused and Divided Attention,
in I. Katz, R. Mack, L. Marks, M. B. Rosson & J. Nielsen (eds.), Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI°95), ACM Press, pp.317—24.

16 James Allan Hudson, Alan Dix & Alan Parkes

Hudson, J. & Parkes, A. [2003a], Novel Interaction Style for Handheld Devices, in K. Anind,
A. Schmidt & J. F. McCarthy (eds.), Adjunct Proceedings of UBICOMP’03, Springer-Verlag,
pp.52-5.

Hudson, J. & Parkes, A. [2003b], Visual Overloading, in C. Stephanidis & J. Jacko (eds.),
Human-Computer Interaction, Theory and Practice (Part 11). Volume 2 of the Proceedings
of Human-Computer Interaction International 2003, Vol. 2, Lawrence Erlbaum Associates,
pp.67-8.

Kamba, T., Elson, S., Harpold, T., Stamper, T. & Sukaviriya, P. [1996], Using Small Screen
Space More Efficiently, in M. J. Tauber, B. Nardi & G. C. van der Veer (eds.), Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems: Common Ground
(CHI’96), ACM Press, pp.383—90.

Kélsch, M. & Turk, M. [2002], Keyboards without Keyboards: A
Survey of Virtual Keyboards, Technical Report 2002-21, Department
of Computer Science, University ~ of California, Santa Barbara.
http://www.create.ucsb.edu/sims/PDFs/Koelsch_and_Turk_SIMS.pdf.

Kurtenbach, G. & Buxton, W. [1994], User Learning and Performance with Marking Menus,
in B. Adelson, S. Dumais & J. Olson (eds.), Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems: Celebrating Interdependence (CHI’94), ACM Press,
pp.258—64.

Lokuge, I. & Suguru, I. [1995], GeoSpace: An Interactive Visualization System for
Exploring Complex Information Spaces, in I. Katz, R. Mack, L. Marks, M. B. Rosson &
J. Nielsen (eds.), Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI’95), ACM Press, pp.409-14.

MacKenzie, I. S. & Zhang, S. X. [1999], The Design and Evaluation of a High-performance
Soft Keyboard, in M. G. Williams & M. W. Altom (eds.), Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems: The CHI is the Limit (CHI’99), ACM
Press, pp.25-31.

MacKenzie, 1., Zhang, S. & Soukoreff, W. [1999], Text Entry using Soft Keyboards:,
Behaviour & Information Technology 18(17), 235—44.

Mankoff, J. & Abowd, G. [1998], Cirrin: A Word-level Unistroke Keyboard for Pen Input,
in E. Mynatt & R. J. K. Jacob (eds.), Proceedings of the 11th Annual ACM Symposium on
User Interface Software and Technology, UIST’98, ACM Press, pp.213—4.

Masui, T. [1998], An Efficient Text Input Method for Pen-based Computers, in M. E.
Atwood, C.-M. Karat, A. Lund, J. Coutaz & J. Karat (eds.), Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI’98), ACM Press, pp.328—35.

McGuffin, M. & Balakrishnan, R. [2002], Acquisition of Expanding Targets, in D. Wixon
(ed.), Proceedings of SIGCHI Conference on Human Factors in Computing Systems:
Changing our World, Changing Ourselves (CHI°02), CHI Letters 4(1), ACM Press, pp.57—
64.

Meyer, A. [1995], Pen Computing. A Technology Overview and a Vision, ACM SIGCHI
Bulletin 27(3), 46—90.

User Interface Overloading: A Novel Approach for Handheld Device Text Input 17

Sears, A., Revis, D., Swatski, J., Crittenden, R. & Shneiderman, B. [1993], Investigating
Touchscreen Typing: The Effect of Keyboard Size on Typing Speed, Behaviour &
Information Technology 12(1), 17-22.

Silvers, R. [1995], Livemap — A System for Viewing Multiple Transparent and Time-
varying Planes in Three Dimensional Space, in J. Miller, I. Katz, R. Mack & L. Marks
(eds.), Conference Companion of the CHI’95 Conference on Human Factors in Computing
Systems, ACM Press, pp.200-1.

Ward, J., Blackwell, A. & MacKay, D. [2000], Dasher — a Data Entry Interface
Using Continuous Gestures and Language Models, in M. Ackerman & K. Edwards
(eds.), Proceedings of the 13th Annual ACM Symposium on User Interface Software and
Technology, UIST’00, CHI Letters 2(2), ACM Press, pp.129-37.

Zhai, S., Hunter, M. & Smith, B. A. [2000], The Metropolis Keyboard: An Exploration
of Quantitative Techniques for Virtual Keyboard Design, in M. Ackerman & K. Edwards
(eds.), Proceedings of the 13th Annual ACM Symposium on User Interface Software and
Technology, UIST’00, CHI Letters 2(2), ACM Press, pp.119-28.

18

Author Index

Dix, Alan, 1 Parkes, Alan, 1

Hudson, James Allan, 1

20

Keyword Index

PDA, 1 transparent layers, 1

text input, 1 visual overloading, 1

22

