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ABSTRACT
In this work, we analyze the different contexts in which one chooses
to integrate artificial intelligence into an interface and the impli-
cations of this choice in managing user interaction. While AI in
systems can provide significant benefits, it is not infallible and can
make errors that seriously affect users. We aim to understand how
to design more robust human-AI systems so that these initial AI
errors do not lead to more catastrophic failures. To prevent failures,
it is essential to detect errors as early as possible and have clear
mechanisms to repair them. However, detecting errors in AI sys-
tems can be challenging. Therefore, we examine various approaches
to error detection and repair, including post-hoc estimation, the
use of traces and ambiguity, and multiple sensor layers.
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1 INTRODUCTION
Emanuele has a car that automatically opens when he
takes the driver’s door handle with the keys in his pocket.
However, one winter day, pulling the handle, he notices
it is ice-covered, and the car is not opening. So he had
to look for the keys in his jacket pockets and manually
open the car.
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Intelligent systems can make a real difference in our lives when
they work, but they do not always work.

In this paper, we analyze the different contexts in which one
chooses to integrate artificial intelligence into an interface and
the implications of this choice in managing user interaction. As a
driving example, we will use an application to help users deal with
car-related tasks. This application attempts to minimize explicit
interaction, so our focus is particularly oriented toward implicit
interactions. However, many of the design issues identified appear
to have a broader scope. Where possible we will choose the simplest
examples that exhibit a particular phenomenon; some are not very
"intelligent" but share one or more of the three C’s of AI-based
systems: Complexity, Uncertainty, or Coadaptation.

The paper will focus on explicating different types of errors,
recognizing an error state, and managing and resolving these in-
evitable situations.We aim to understand how to designmore robust
human-AI systems so that these initial errors do not lead to more
catastrophic failures. However, first, we will motivate the general
area and case study.

1.1 To err is AI
To err is human – as researchers and professionals in human-computer
interaction, part of our expertise and culture is understanding our
users’ glories and fallibilities. We do not expect our users to perform
like automatons; we know there will be lapses of concentration,
misinterpretation of data, limited experience, and physical slips.

Effective human-computer interaction design creates systems
that work and that are robust despite these occasional human lapses
or mistakes.

We design systems with features that scaffold the users’ memory,
for example, through recognition rather than recall; features that
highlight potential slips, for example, spelling checkers; features
that reduce the impact of errors, for example, undo; and features that
help the users detect and repair problems, for example ensuring
rapid feedback on the effects of actions. All in all, these design
elements prevent user errors from becoming system failures.

Note the contrast of the human with an automaton: the ma-
chine that performs flawlessly time after time, processing billions
of calculations, printing millions of payslips; infallible albeit lim-
ited and unimaginative. Of course, hardware can fail, especially
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for very large-scale computation. Much of the complexity of cloud-
computing infrastructure and algorithms, for example, MapReduce,
is about making the overall computer system behave as if it is flaw-
less [8]. The expectation is that the overall system should behave
. . . like an automaton. Recall that HAL, the AI in Kubrick’s 2001,
becomes homicidal precisely because it had made a mistake and
was trying to cover that up.

Of course, we know AI systems are not like this. They are trained
on limited data and often use limited sensor data. They are not
simply following pre-determined rules but attempting to interpret
the environment, particularly the behaviors and intentions of users.
The results of an AI system are richer and more nuanced than an
"automaton" but, consequently, not flawless.

Effective human-AI interaction design creates robust systems
that work, despite these occasional AI lapses or mistakes.

1.2 Implicit Interaction
Nowadays, AI-based systems are considered sophisticated and
cutting-edge, therefore, often preferred to more traditional ones.
AI allows the introduction of a component into the system that
the user perceives as "magic", which usually takes the form of au-
tomation of a mechanism that otherwise the user would have had
to operate manually. From an interaction point of view, therefore,
AI makes it possible to design implicit-interaction-based systems,
i.e., systems capable of acting by implicitly perceiving the user’s
intentions, sometimes even predicting them. All this makes the
system even more "magical" and astonishing in the eyes of the user
and generally reduces user effort.

Implicit interaction is extremely useful in specific contexts where
it is important not to distract the user or it is hard to get the user’s
attention and the needed time to complete the given task.

1.2.1 When it is a good idea? Using AI-based systems with implicit
interaction can be a great idea when the AI system can perform
complex tasks that are difficult or time-consuming for users to per-
form manually. The user experience can be substantially improved
by, for instance, chatbots or virtual assistants that can comprehend
natural language and offer individualized advice or answers.

Additionally, implicit interaction can be useful in situations
where the user is not able or willing to provide explicit input, such
as in the case of a driving user.

1.2.2 When it is not a good idea? Implicit interaction may not
be the ideal strategy in some circumstances. For instance, specific
human input may be required if the system demands high accuracy
or precision to guarantee the desired result. Implicit interaction
may also be viewed as obtrusive or confusing when the user needs
total control over the system.

1.3 Driving examples
The examples we propose in this work are about employing AI
solutions to ease car-related tasks. A running example of this sit-
uation could be when drivers use certain apps to allow them to
complete different parking tasks more easily [4][3][2][15]. Implicit
interaction in the context of smart parking can have several benefits,
including the reduced requirement for driver attention, increased ef-
ficiency in parking space utilization, reduced search time for drivers

looking for parking spots, and potentially reduced traffic conges-
tion as drivers may need to travel shorter distances to find available
parking spots [1].

In this work, we imagine an intelligent parking app that implic-
itly understands if the user is driving or not, hence when and where
it parks its car, and that shares this information with other inter-
ested users (e.g., other family members that share the same car).
To extend this example to critical situations, we imagine that the
AI underlining the app is sufficiently smart to lock and unlock the
car automatically when the owner approaches. Another example
of implicit interaction we use is the automatic payment of parking
fees. When a vehicle enters a parking space, sensors can detect its
presence and record the start time of the parking session. When
the vehicle leaves the space, the sensors can detect its departure
and calculate the parking session duration. Based on the duration
and the applicable parking rates, the AI system can automatically
calculate the parking fee and charge it to the user’s account without
requiring any action from the user.

Figure 1: Ideal case – perfect sensing and an event is generated
at the moment the user’s activity changes

As themost recurring example, we imagine that the user Emanuele
is using an AI-based app to track the parking location of his car,
and uses it also to share the information with his son.

In the ideal case, the app generates an event if it senses a core
change with high certainty. For example, if the system thinks the
user has been driving and then they start to walk, a ‘car parked’
event is generated (figure 1).

Problems arise when raw sensing input is in some way ambigu-
ous. In these cases, there may be a period of uncertainty instead
of a direct transition from driving to walking. If this is short, the
lower level sensing layer may generate the ‘car parked’ event. If
the uncertainty persists, there may be no natural trigger point and
no event generated at all, or, perhaps worse, it is generated so late
that a significant error in the parking location estimation is done.

In our example, we imagine Emanuele parks at night, and his
son uses the app in the morning to find the car. However, the night
before, the sensors on Emanuele’s phone were uncertain of its
driving state for a considerable time and never generated a ‘car
parked’ event, or generated one significantly misplaced. Emanuele
might have remembered for himself where the car was parked, but
his son has no idea where it is exactly.

1.4 Paper Outline
This work is organized as follows. Section 2 provides a literature
overview of previous human and system error and repair research.
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In section 3, we define and categorize errors that can occur in
human-AI systems. In section 4, we discuss methods for detecting
errors and the roles and responsibilities of the different actors in
the detection and repair process. Section 5 explores the challenges
of sensing and detecting failures, including cases where sensor
data is inconsistent or ambiguous. In section 6, we discuss design
strategies for addressing the challenges identified in the previous
sections, including improving early detection and communication,
ensuring human-AI system reliability, and clarifying responsibility
for detecting and repairing errors. Conclusions and ongoing work
are reported in section 7.

2 RELATEDWORK
Errors in human-AI systems have become a critical topic in recent
years as AI systems are increasingly integrated into various aspects
of our lives. Despite the significant progress made in AI research, AI
systems are still prone to errors that can have serious consequences,
particularly in safety-critical applications such as autonomous ve-
hicles, medical diagnosis, and financial decision-making. This has
led to a growing body of research focused on understanding the
nature of errors in human-AI systems and developing strategies to
minimize their occurrence and impact.

2.1 Levels of automation
Before AI was born, several automatic systems were built. The
work by Parasuraman et al. [16] proposes a model that describes
the different types and levels of human interaction with automation.
The model is based on three types of interaction: direct, supervisory,
and indirect. Direct interaction involves the human controlling the
automation directly, while supervisory interaction involves the
human monitoring and intervening in the automation’s actions.
Indirect interaction involves automation making decisions, and
taking actions on behalf of the human.

The model also defines four levels of interaction, ranging from
the lowest level, where the human is only observing the automa-
tion, to the highest level, where the automation can perform tasks
autonomously without human intervention. When considering au-
tomobile automation, the Society of Automotive Engineers has
made further distinctions and defined five levels [18, 19], which
have become influential and have been adopted or adapted by many
national and international standards:

However, Shneiderman argues that the one-dimensional view of
automation implied by these levels of automation is too simplistic.
Instead of a single dimension between human control and computer
automation, he suggests considering a two-dimensional framework
with higher and lower levels of human control compatible with
higher and lower levels of levels of automation [20]. Crucially he
considers the point at which both human control and computer
automation are high, working together, as sweet spot for “reliable,
safe and trustworthy” AI systems.

2.2 Intelligent interactions
One of the iconic early uses of AI in user interactionwas EAGER (Ex-
traction, Analysis, and Generalization Environment for Repetitive
tasks), which allowed users to program repetitive tasks by example
[7]. EAGER is based on the idea that users can demonstrate how

to perform a task once, then the system will automatically extract
the relevant information and generalize it to perform the task in
other instances. The paper describes the design and implementation
of EAGER, including the algorithms used to extract and general-
ize examples, and presents several case studies demonstrating the
system’s effectiveness. The authors argue that EAGER has several
advantages over traditional programming methods, including ease
of use and increased productivity. Since EAGER there has been
continuous work within the intelligent user interfaces community,
albeit until recent years more limited uptake in deployed systems.

In a paper from 2017 [17], Human Information Interaction (HII)
refers to the process of humans interacting with information to
achieve a specific goal. This can involve searching for information,
processing it, and using it to make decisions. HII is a complex
process that can be influenced by a wide range of factors, including
individual differences, the nature of the task, and the characteristics
of the information itself. Crucially HII and AI have increasingly
overlapped in areas of big data analysis and systems using big data
to generate models for intelligent interactions.

2.3 Errors in human-AI systems
We now proceed to review the existing literature on errors in
human-AI systems, with a particular focus on the causes of er-
rors, the types of errors that can occur, and the approaches that
have been proposed for mitigating errors in these systems.

Errors can occur in human-AI systems when there is a mismatch
between the expectations and capabilities of humans and AI. Errors
can arise for various reasons, such as data bias, lack of transparency
in decision-making, or miscommunication between humans and
AI systems. For example, AI systems may make errors in image
recognition tasks when they encounter images that are different
from the ones they were trained on or when used in contexts that
were not anticipated during their development. Human users may
also make errors when interacting with AI systems, such as mis-
interpreting the system’s output or failing to provide the system
with the necessary inputs.

To minimize errors in human-AI systems, it is important to de-
sign AI systems that are transparent, explainable, and robust to
variations in data and context. It is also important to ensure that
humans are properly trained to interact with AI systems and un-
derstand the limitations and capabilities of these systems. Ongoing
monitoring and evaluation of AI systems can help identify and
address errors as they arise and improve their overall performance
and reliability.

There has also been research regarding Second Language Learn-
ing [11] and Error Remediation in those systems using Artificial
Intelligence. AI systems can be trained to analyze learner perfor-
mance and identify patterns of errors that are common among
learners. This analysis can be used to develop targeted interven-
tions to help learners improve their language skills. For example,
an AI system may identify that a group of learners is struggling
with a particular grammar rule and provide them with additional
exercises or feedback to help them master that rule.

To be effective, AI systems used for second language learning
must be able to identify errors accurately and provide appropriate
feedback to learners. This requires the system to be trained on large
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learner performance data datasets and recognize subtle variations
in language use that may indicate errors.

Errors can occur in human-AI systems used for second language
learning if the system is not adequately calibrated or cannot recog-
nize the full range of errors that learners may make. For example,
an AI system may fail to recognize errors unique to certain dialects
or resulting from interference from a learner’s first language.

It is important to continually evaluate the AI system’s perfor-
mance and make adjustments as needed to minimize errors in
human-AI systems used for second language learning. This may
involve retraining the AI system on new data or adjusting the AI
system’s algorithms to recognize certain errors better than others.
Additionally, it is important to provide learners with opportuni-
ties to interact with human teachers or tutors who can provide
additional feedback and support to help them overcome errors and
improve their language skills.

2.4 Human and system error and repair
Preventing and dealing with user errors has always been a central
part of the HCI literature. For example, two of Nielsen’s heuristics
are "Error prevention" and "Help users recognize, diagnose, and
recover from errors" [13]. The first concerns scaffolding, such as
using fixed sets of options rather than free typing or ‘recognition
rather than recall’ [21], whereas the second concerns what happens
after an error occurs.

The latter is closer to the main focus of this paper, and the
importance of being to tell that something has gonewrong is central
in Norman’s influential seven-stage model [14]. Three stages are
about the user working out what to do and doing it, but three are
about assessing the outcomes of their action on the system, that is
feedback. The model makes distinctions about problems at different
levels, most importantly between slips and mistakes. The former,
a slip, is when the user’s intended action is correct, but there is a
problem in executing it, for example, pressing the wrong key. The
second, a mistake, is when the users’ fundamental model of the
system state or behavior is incorrect. So they formulate an incorrect
action, for example, that they think ctrl-U means "undo".

Crucially, the ability to perform this assessment and evaluation
depends on the system giving timely and informative feedback. Not
surprisingly, this is a key part of classic user interface design, for
example, "Visibility of system status" in Nielsen’s heuristics [13]
and "Offer informative feedback" in Shneiderman’s Eight Golden
Rules [21]. These do not prevent things from going wrong but mean
that errors are noticed and thus can be fixed. Shneiderman’s "permit
easy reversal of actions" [21] is precisely addressing this ability to
recover.

Human communication is rarely problem free; we mishear and
misunderstand one another and yet manage. This is in part due
to processes of repair, where we realize problems have occurred
and deal with them, but most often in ways that do not interrupt
the overall flow of the conversation. Frohlich used conversational
analysis of human-human repair to inform the design of human-
machine dialogues [12].

In conversation and other aspects of life, timeliness is critical
for repair; it is usually far easier to correct errors as soon as they
happen than later when theremay be further knock-on effects of the

error. Some years ago, Stephen Brewster noted an expert slip with
on-screen buttons. The expert user would occasionally not properly
press the button. Still, precisely because they were experts, they
did not pay attention to the semantic feedback and only noticed
too late that the error had occurred. Adding appropriate sound did
not prevent these errors from occurring, but it did mean that they
were immediately noticed and hence could be repaired [5].

The middle stage of Norman’s seven-stage model is system exe-
cution, which, as noted previously, is often assumed to be flawless,
at least in execution, if not in design. Some design approaches to
"recognize, diagnose, and recover from errors" apply equally well
to AI and user errors. However, there may be additional problems
as the AI errors may not be immediately apparent to the users.

Seamful design [6] addresses this by embracing the deficiencies
in sensing and system behavior and bringing them to the surface
as an explicit part of the interaction. This is often used in an enter-
tainment context, for example, the early work using gaps in WiFi
as part of gameplay. However, it also has more prosaic applications,
for example, the fact that a mobile phone shows signal-strength
bars allows various ameliorative actions, such as standing closer to
a window.

Appropriate intelligence [10] suggests that limitations in AI
performance should be managed by embedding the intelligent al-
gorithms within interactive contexts that make the errors in the
AI less damaging, for example, using easy-to-accept suggestions
rather than full automation. Formal techniques for the design of
sensor-rich IoT systems [9], expand on this by modeling both hu-
man activity and sensor limitations and then attempting to match
the certainty of sensing and the varying consequences of errors
in different situations to create rules and set thresholds, which are
highly likely to be correct in the most critical situations, whilst
giving ‘best efforts’ where it is less critical.

3 DEFINE ERRORS AND FAILURES
Accuracy and other metrics are crucial in designing ML/DL models,
but models usually have less than 100% accuracy. Indeed, AI can
make a wrong assumption about the context or user behavior due
to bad sensing or deductions.

This section will look at different kinds of AI errors that may
occur, and different dimensions in which to classify them. In fact, an
error in the strict sense of the term is to be considered a malfunction
of the system with respect to the design expectations, but within a
complex system, errors can be defined from several points of view.
In this section, we distinguish between observable and unobservable
errors (3.1) and look at the differences between errors of omission
and commission (3.2). Finally, we provide our own classification
based on users’ perception of errors and their changing expectations
and behaviors (3.3).

3.1 Observable errors
When the AI gets something wrong, that mistake may not cause
a problem for the user, let alone a system failure. Based on the de-
ductions and calculations of the AI, subsequent actions are usually
programmed for the system’s functioning. However, not all of them
directly affect the user and their system experience. Based on this
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Figure 2: Error Timeline

consideration, we distinguish between observable and unobserv-
able errors on the user’s part. Figure 2 schematizes the possible
flow of actions that derive from a system’s decisions made based
on an AI error.

The system’s functions can be divided into background and
foreground.

Background actions happen when the system seems to be doing
nothing, such as when the smartphone is in the user’s pocket. These
functions can be activated because they are programmed, but the
context and the environment can also trigger them. On the other
hand, when the system does something and exhibits observable
behavior, such as updating the user interface, these results fall under
the category of foreground actions.

When an AI makes a computation, such as a context assessment,
whether the result is right or wrong, background and foreground
actions can be triggered. If the AI makes a mistake and the con-
sequent action is in the foreground, this will result in an error
observable to the user. As suggested in the upper path of Figure
2, an observable error can also induce the user to propagate the
error with one or more new actions. Similarly, a background action
triggered by an error condition is also an error, but in this case, it is
not user-observable and will not initially generate additional error
conditions.

Please note that an unobservable AI error can become observable
later, impacting the consequences, as discussed in the following
section 4. Moreover, in this phase, we distinguish between the
possibility for the user to detect and intercept the error, and not
between detected and undetected errors.

Also, note that some AI errors could generate erroneous ac-
tions within the same system that are observable in some cases
and for some users but unobservable for others. Consider the ex-
ample presented in 1.3. Assume that Emanuele parks his car, but
the AI wrongly register its location due to some sensing errors or
uncertainty. This error is a background error for Emanuele, who
can proceed and get home without perceiving any errors in his
user experience. But later, Emanuele’s son needs to get the car, so
he walks to the wrong car location to discover it is not there. In
this second case, the action resulting from the AI error becomes
observable and actively damaging.

This dimension of distinction, observable or unobservable, is
intuitive but fundamental for introducing an error’s criticality level.
Closely linked to the observability of an error is the possibility of
intercepting and repairing the error.

3.2 AI errors of commission and omission
For human errors, one often distinguishes errors of commission:
things done wrongly, and errors of omission: things that are not
done when they should have been. Both can have deleterious con-
sequences, but typically errors of commission are regarded as more
severe or blameworthy. Similarly, an AI can act in error by doing
something wrong or doing nothing (when supposed to do some-
thing). For example, the AI inaccurately estimates Emanuele’s car
parking location and wrongly modifies the UI to inform his son
about it (commission error). On the other hand, the AI may incor-
rectly assume that Emanuele is still traveling, not informing his
son that the car is free to use (omission error). Table 1 describes
the four possibilities of an AI taking actions that could be either
correct or wrong based on the design expectations.

Expect something Expect nothing
Does something correct/wrong wrong
Does nothing wrong correct
Table 1: AI actions based on design expectations

Note we are referring here to design expectations. Ideally, the
user will understand the system; hence, design and user expecta-
tions are the same. Still, in practice, user expectations could be
misplaced: for example, if the user believes the system can do some-
thing it cannot.

Note, too, that this will interact with whether the AI errors are
observable. Typically, wrong actions (commission error) will be
observable, but erroneous inaction (omission error) may not be
noticed, even if the user expects the outcome. For example, the user
may expect the system to identify free parking spots vacated by
other app users; however, if the system fails to notice these parking
spots, the user would hardly tell if there are no parking spots or if
the AI did not notice them.

3.3 Users perception of errors, changing
behavior and expectations

It is interesting to highlight the many degrees of perception the
user may have toward AI errors before discussing their likelihood
of occurrence and the value of error recognition in preventing
more severe failures. Below, we discuss the concepts of detection,
perception, and understanding.

• Detection is the ability of a human to notice when an AI
system makes an error. This may involve recognizing a dis-
crepancy between the expected and actual output of the
system or identifying patterns or trends that suggest a prob-
lem. For example, Emanuele notices that the app registered
their last parking spot in the wrong location.
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• Perception is the ability of a human to interpret and make
sense of the error detected in the AI system. This may in-
volve having an idea of the context and predicting the conse-
quences of the error. For example, Emanuele predicts that if
the app shows the parked car in the wrong location, it may
fail to track when the car’s location changes again.

• Understanding is the ability of a human to comprehend the
underlying causes and factors that may have contributed
to the occurrence of the error in the AI system. This may
involve knowledge of the technical aspects of the system, as
well as the broader social, ethical, and legal implications of
the error. Understanding an AI error may also involve identi-
fying potential solutions or strategies for preventing similar
errors from occurring in the future. For example, suppose
Emanuele understands that the AI system fails to correctly
locate the parked car when there is a poor connection, like
in the underground parking lot of his home. In that case, he
may manually register the car’s position every time he gets
home.

Based on that and what was introduced in the previous sections,
we propose an additional error classification based on user percep-
tion, understanding, and changing expectations and behavior. We,
therefore, distinguish errors into three types:

• Type I – The AI does something that causes problems in
’normal’ (pre-intervention) behavior, but the user still does
not understand the system enough. This type of error is
unobservable until very late, when consequences may be
costly. For example, the car unlocks as Emanuele passes it
(maybe simple proximity-based switching), but he is rushing
to a shop, then a thief notices, opens the door and steals
something. Emanuele did not understand that proximity
would unlock the car, so he could not detect the error. Hence
it leads to failure.

• Type II - The user has begun to build a perception of the
AI and has expectations about what it will do, but it does
something different. For example, Emanuele reaches for the
car door handle, expecting it to be unlocked, but it is still
locked, and he breaks his fingernails. The user has a level of
understanding of the system, but it is not enough to prevent
failures.

• Type III – The user’s fundamental model or knowledge of the
world has changed due to a smart app/environment, and they
are less able to do something—for example, not being able
to find their way in a well-known city without a navigation
app because they have become used to simply following
directions. In Type III, the user’s expectation is that the AI
does not make errors, but there is no AI. In this case, the
user can have a complete understanding of the system or
not, but the accent is on the complete trust that the user has
in the system.

In the next section (4), we will consider how an AI initial error
may or may not lead to critical consequences, i.e., whether AI error
leads to system failure. A failure impacts the human-AI system and
possibly the user’s life, and a non-negligible cost may be required
to repair it. Typically, a failure comes from the user’s or AI’s wrong
actions misdirected by an initial AI error that cannot be undone.

4 ERROR DETECTION AND REPAIR TO
PREVENT FAILURES

We have outlined a wide range of different types of AI errors. We
saw in Section 2.4, when discussing human error, that early de-
tection and repair are at the heart of preventing minor slips from
becoming major problems. The same is true when we look at AI
errors. No matter the course of the error, the earlier problems are
found, the more likely they are to be fixable.

4.1 Importance of detection
Detection, by the human or the AI, is the ability to notice when
an AI system makes an error. This may involve recognizing a dis-
crepancy between the expected and actual output of the system
or identifying patterns or trends that suggest a problem. As antici-
pated, the importance of detecting an error lies in the possibility of
repairing it and taking an alternative action. Otherwise, an unde-
tected error is likely to become a system failure - a significant error
that impacts the user experience and may require a non-negligible
cost to be repaired. Referring to the above example in section 1.3,
suppose Emanuele’s son can detect the error. In that case, the failure
may be prevented: for example, if the AI notified him when the
parking location was not detected, or its estimation is not accurate
enough.

On the other hand, the repair is impossible if the error is unde-
tected. Eventually, the user will acknowledge it, but it will have
already become a failure. In our example, Emanuele’s son would
walk to the wrong parking location to discover that the car was not
there.

Of course, the repairing action itself may be costly, and the
timing of the detection is relevant: an early detected error is usually
reparable with lower costs than a late detected one. For example,
if Emanuele’s son somehow realizes that an error occurred and is
in a hurry to get the car, he can wake up his father to know where
the car is actually parked.

Effective repair makes an AI system robust, and detection is a
necessary condition for repair.

4.2 Detection and Repair - who does what?
We have seen that errors or inaccuracies are often inevitable; de-
tecting them and repairing any consequences before they become
severe is essential.

In a robust human-AI system, two main aspects must be ad-
dressed: who detects the problem and who will repair it. Indeed,
both humans and AI can weigh in to detect and repair errors; it is
left to the designer to choose if the agent detecting the error is the
same as the one that repairs it or not.

When the user is in charge of detecting and repairing the error, a
robust design should aid human detection by explicitly displaying
the system state. In our example, the AI may notify Emanuele about
the registered parking location, so that he could check it and fix it
before going to sleep.

If the AI should detect and repair this error, it may take into
account additional information gathered after the event generation.
For example, if the AI is wrongly assuming that Emanuele is still
driving, but then detects that he is actually connected to his home
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WiFi - hence detecting the error, it can autonomously make a new
estimation about the car’s parking location.

When the agent detecting the error is not the same as the one
that needs to repair, there must be some communication between
the two.

In our example, two possible design solutions are:
• Human detects, AI repairs – Emanuele notices that the car
parking position on the app is wrong and give this negative
feedback to the AI, which will include it in a new estimation
of the car parking location.

• AI detects, Human repairs – The AI might see that its es-
timation accuracy is under a certain threshold, and alert
Emanuele, who selects the correct car parking position on a
map.

Understanding these different options allows us to consider dif-
ferent potential paths to error detection and recovery; for example,
the user detects – user tells the AI – AI fixes; or AI detects – AI
tells user – user fixes. There needs to be AI-state visualization or
various forms of user interaction within these places. We will re-
turn to several of these when we discuss design implications in
Section 6. The AI system is intelligent and changes potential user
interactions with it. Several of these interactions are similar to the
corresponding cases of detection and repair when the primary error
was due to a human mistake or misunderstanding (often itself due
to a design error).

Note that, in this section, we have lightly made the assumption
that AI can detect errors. In reality, designing and developing the
AI detection process can be much more complicated than human
detection, which can also be based on perception and understanding.
For this reason, we have dedicated the following section to the
particular case of how AI can detect errors.

5 SENSING ERRORS
It is reasonable that a computer system that is or isn’t equipped
with AI can detect certain forms of inconsistency or problems with
user input as it can take in different factors; for example, a spelling
checker may not knowwhat the user meant to write but can tell that
the word typed is not in the dictionary. In contrast, if the computer
system can detect its own error, why couldn’t it simply do it right
before making the error? Typically the answer to this lies in the
changing information available to the system both from the user
and the environment. In this section, we look at how this can be
achieved by combining knowledge of behavior and the varying
degrees of certainty of sensor data and inferences.

5.1 Times and information
In most AI inference/estimation tasks, we are considering two main
time points:

• the time when the inference/estimation is made
• the time the inference/estimation is about

Figure 3 shows the time of estimation on the horizontal axis and
the time it is about on the vertical axis. Points along the diagonal
represent point estimates. When the time of inference is the same
as the time it is about, the AI system is using its sensing data to
make an inference about the current state of the world. For example,

if the AI detects that Emanuele has got in his car, it may turn on
the radio.

Figure 3: Two times: time of estimation vs. time about which
we are estimating

In contrast, points above the line represent situations when the
thing being estimated is in the future; that is a prediction. In the
parking context, this may be when Emanuele walks out of his office
and heads toward his car. The system may predict that he will drive
away and therefore alert another driver that the parking space will
become available.

Finally, points below the time represent post-hoc estimates about
the past. These do not immediately sound useful, but consider the
example above. Even if the system does not detect the correct
moment when Emanuele parks his car at night, the important thing
is that the correct location is given to his son in the morning.

Crucially, more information may be available when the system
makes inferences later. In general, the later an estimation is made,
the greater its accuracy. This can happen for a prediction; for exam-
ple, if Emanuele walks towards his car and turns into a shop, the
prediction of him freeing his parking spot will change. It can also
happen retrospectively, if, for example, the car parking estimation
can correct itself overnight before Emanuele’s son looks for the car.

In the former case, it is clear that new information is available
(the user walking into the shop). Still, it is unclear what additional in-
formation would be available for post-hoc correction of the vehicle
position. Sometimes, there can be delays in sensor information or
other data becoming available; this is common in some application
areas; for example, if some sensors are not attached to permanent
networks, or there is a need for raw sensor data to be processed,
such as the parking application.

For other applications, no new sensing about the time of interest
is available after the event. Happily, knowledge of future states can
be combined with models of human activity to improve post-hoc
estimates.

5.2 Post-hoc estimation – traces and
inconsistency

In some cases, we can create state models of normal behavior with
valid traces, such as:

. . . driving <car parked> walking . . .
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These might come from ad hoc modeling or machine learning
inference from user traces.

This model can be used for prediction, especially in cases with
additional probabilistic knowledge. For example, if Emanuele is
known to be at home (based on WiFi reception) at 2 am, they
may be assumed to be sleeping and unlikely to drive again before
the morning. However, these models can also be used to ‘play
backward’, inferring past states, especially when sensing data is
inaccurate or incomplete.

If the system comes into a certain state, it may be possible to
identify strong inconsistencies. For example, if the state was ‘driv-
ing’ followed by an uncertain state and then definite ‘walking’, then
the system knows that a parking event should have happened in
between, even though it is unclear where. That is, the system has
detected a certain failure, albeit potentially a considerable time after
the event.

This does not help correct any past actions such as, but it can
help later. For example, this could be conveyed via a ‘best guess’
estimate, such as the last point when the system was deemed to
be driving, or by one that explicitly conveys uncertainty, such as
showing the set of recorded positions between the last definite
driving location and the first definite walking one.

Figure 4: Unambiguous sensing

5.3 Levels of ambiguity
Figure 4 shows the ideal situation where sensing is unambiguous.
The overall area represents the set of all possible sensing values.
For each state of the real world, sets of unambiguous sensor read-
ings correspond to the state, and each trace of user activity moves
ambiguously through a consistent path of states. The dashed line
shows an example trace, where Emanuele is at his office one evening,
walks to the car, drives, periodically stops at traffic lights, and then
walks home.

However, sensing is rarely as perfect or accurate as this. In prac-
tice, there are levels of ambiguity as shown in Figure 5:

certain This is a state in which the AI is confident about de-
tecting the context. Considering smart parking, we can be
fairly certain that Emanuele is driving if there are engine-
like vibrations, the GPS shows rapid movement, and there
is relatively little body movement. Alternatively, if there is
minimal engine noise, slow GPS movement (1–3 km/h), and

periodic (approximately 1 Hz) body movement, the AI can
safely conclude that Emanuele is walking. Every hint that
can help the system stay in or return to this state, is welcome.

uncertain This is when there are some possible unusual behav-
iors and the system is not completely confident but within
the range of possible variation of the previous certain state.
The default behavior assumes the system is still within the
previous state. An example would be if Emanuele is walking
and stops momentarily to look in a shop window or chat
with a friend – for a short while, there is no GPS movement,
low body movement, and no engine noise.

incoherence Here the AI is unsure as the sensor readings do
not match the typical variation of any usual behavior. An
example of this will be if there is both engine noise and
periodic leg movement. If these states are transient, they
would be filtered out, but if they persist for any length of
time, they suggest a state that is totally unknown to the
system; maybe Emanuele is dancing in the car seat while
waiting in a long road queue. This may simply be recorded
internally as an unknown state, but if any critical action is
to be taken, this may be a time to warn the user explicitly
before it’s too late.

For obvious reasons, we informally refer to these as the egg yolk,
egg white, and frying pan, respectively.

Figure 5: Ambiguous and incoherent sensing

Note, wemay also have continuous levels of certainty rather than
three fixed levels, but using distinct regions can help us think about
detection and intervention strategies. Also, we can think of these
instantaneously, but they have a temporal nature; for example, their
‘stationary in a car’ sensor readings that last a long time might be
regarded as unusual or incoherent, even if short stationary periods
are common.

5.4 Using traces and ambiguity for post-hoc
detection

We return now to the parking at night example in section 1.3 and
see how the knowledge of common traces and ambiguity levels
can help the AI system to better deal with errors and offer the
potential for AI or human repair. Figure 6 shows the scenario with
the period of uncertainty and the normal variation levels (the egg
white region) for the driving and walking states.
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Figure 6: Difficult case

In the ideal situation (figure 1), the parking event was generated
when the state changed from driving to walking, but in this case,
there is no clear point of change.

In Figure 6, point (1) is the first time the sensor readings fall
outside the common variation of driving and, thus, the first point at
which the AI system’s model of the world is incoherent. AI’s infor-
mation is not enough to generate a parking event, and potentially
it is missing to detect a parking location; the consequences of this
error are quite important in our example. This could be a point at
which the AI system requests an explicit confirmation. However,
we normally wish to avoid this in implicit interaction.

Point (2) is the first time the system can inform Emanuele that
something has gone wrong and that there is an inconsistency in its
past sensing. There has been a transition from driving to walking,
but no parking event has been generated. This could again be a
chance for subtle and ignorable user interaction for clarification.
Alternatively, the AI system could take corrective action itself as
suggested in Section 5.2, but using the knowledge of normal levels
of variation to make estimates more accurate. As noted, up until
point (1), it is fairly safe to assume that Emanuele was still driving.
Similarly, the time at which Emanuele can be confidently inferred
to be walking can be pushed back to the first point the sensors
enter its range of variation. The period of uncertainty and hence
the geographic inaccuracy has been reduced.

Finally, at point (3), Emanuele is at home. Even though this is
somewhat removed from the point of ambiguity, it is the first time
he is in a context that makes explicit interaction more acceptable.
Of course, he may have forgotten the parking location by this time,
but it is better to clarify this at point (3) than when in a hurry in
the morning.

5.5 Dealing with sensor-layer failure
In a safety-critical situation, we might want to report every low-
level sensor failure and perhaps get human confirmation or over-
rides. Typically we do not want this for most applications. Further-
more, the knowledge of the right level of warning/request for user
intervention needs application knowledge. Architecturally there
needs to be rich enough API between layers to enable higher levels
of application software to decide which lower-level failures matter
and how to weigh up the severity of the problem (for the user) with
the certainty that there is a problem.

In the case of an incoherent trace, we have a high certainty that
a problem has occurred, but it may be some time after the actual
important event. In the car parking example, Emanuele might get a
prompt from his parking app when it is certain he is walking, or
if not before, when he is at home (as sensed by GPS, WiFi signal).
When asked at this point, he is more likely to remember than the
next morning. Also, repairing at that point might avoid wasting
time for his son, who may be in a hurry the next morning.

The ambiguity region is a little more complicated. The ambiguity
means we are uncertain of the state, and it is possible that inter-
action at this point would actually cause an interruption, maybe
while Emanuele is close maneuvering while parking. However, this
is also the ideal point to request user information as it is closer to
the real change point.

6 DESIGN IMPLICATIONS
Understanding this understanding of AI errors leads to a high-
level design strategy. In general, it poses questions to ask, given
a potential error or inaccuracy with the system; more detailed
heuristics will depend on particular situations.

6.1 Helping early detection
As we have seen, early detection makes effective repair more likely.
We have two design options:

• help the user – Provide appropriate visualization, audio, or
other feedback or status to the user so that they are more
likely to detect a problem.

• help the AI – Create mechanisms so that the AI system can
detect its errors. This will typically happen after some time
when more information becomes available.

Sometimes one or other design options may be easier to im-
plement or more effective. However, note they are not mutually
exclusive, and both can be employed. For example, in the case of the
parking app unlocking the car as the user approaches, this could
immediately produce a small notification sound. However, if this is
missed, the system might still notice if the user has walked away
again.

6.2 Helping communicate
In the case when detection and repair are performed by different
agents, we need to seek appropriate communication options:

• user to the AI – When the user has detected a problem, but
the AI needs to correct it, we need to find easy ways to let
the system know. Ideally, this can be designed to make use of
the fact that the detection will be due to a recent notification
or status change so that it can be highly contextual and not
require extensive interaction.

• AI to the user – When the AI has detected its own error
but needs to inform a user, this needs to balance the need
to inform the user as soon as possible to enable repair be-
fore problems get worse while being subtle enough to avoid
distracting the user, or being tedious.
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6.3 System Reliability - when accuracy may
become a problem

Another aspect that designers should be concerned with is the
level of reliability the user expects from the AI. This expectation is
usually accumulated by the active experience of the system, as after
a certain period of use, the user will begin to accumulate knowledge
of the system, experiencing situations in which the AI will work
more or less accurately. Of course, one of the goals is for the user
to trust the AI - and we certainly want to avoid them discovering
situations of unreliability in critical contexts. In our car example,
it would be better for the user not to discover that the car unlocks
itself as they walk past it, only when the thief has already stolen
it. A possible design solution would be an AI that advertises its
real level of accuracy, to avoid deluding the user, but manifesting a
certain level of uncertainty can be highly detrimental to building
user trust, leading them to abandon the system quickly. In short, the
designer has to deal with the honest reliability/user trust trade-off.
In any case, we can distinguish two situations:

6.3.1 Low reliability. When an AI has relatively low reliability, the
users expect this unreliability.

Here the rules of appropriate intelligence come in an ‘active’
way. The unreliable AI should not actively do something hard to
repair – for example, interrupting important work or rewriting text
without asking. However, the user monitors things, so situation
errors that go undetected are rare – the human ensures detection.
In the car door example, if the system opens the door 70% of the
time, but the other 30% fails to detect, the driver may gently try the
door handle before pulling hard.

6.3.2 High reliability. Sometimes the worst problems occur if the
system is very reliable, perhaps correct 99% of the time, or 99.9% of
the time, but still occasionally gets things wrong.

In these cases, the human comes to expect the AI to behave
correctly and therefore is unprepared for failure. For example, if
the AI detects paid parking areas with 99.9% accuracy and pays au-
tomatically, the driver will get used to not checking if the payment
occurred and may be fined when the AI fails.

6.3.3 Responsibility for detection. In the low-reliability situation,
the human effectively takes responsibility for monitoring the sys-
tem’s behavior (without necessarily even being aware that is what
they are doing).

In a high-reliability situation, the human will be unlikely to
notice, and therefore we need to design strategies that help alert
the user to unexpected situations.

For example, suppose the user is walking very quickly along the
pavement towards their car and don’t appear to be slowing; the
parking detection system might assume they will not enter the car
and so not unlock it (precautionary principle for avoiding theft).
However, if the user stops suddenly (perhaps was just in a hurry
or almost missed noticing which of the line of cars was theirs) and
reaches for the car door, we will likely get the broken finger-nail
situation! To avoid this, the car app could detect that while its action
is NOT to unlock, it is a potentially ambiguous situation and so do
something to warn the user, perhaps vibrate their phone (a sort of
‘hello’ from the car as they walk past) or make the car handle glow
red.

7 CONCLUSIONS
This paper has highlighted the importance of considering errors
and failures in human-AI systems and the challenges involved in
detecting and repairing them. It is clear that AI systems are not
infallible and can make errors of commission or omission that can
have significant consequences for users. The perception of errors
can change over time, and users may develop new expectations and
behaviors in response to errors.

To prevent failures, it is essential to detect errors as early as
possible and have clear mechanisms to repair them. This requires
collaboration between human and AI and effective communication
and feedback mechanisms to ensure that users are aware of errors
and understand how they can be repaired.

The research on human-AI interaction has shown that detecting
errors in AI systems can be challenging, and there is no one-size-fits-
all solution. Therefore, it is essential to have a range of approaches
available, including post-hoc estimation, the use of traces and am-
biguity, and multiple sensor layers to detect and repair errors in AI
systems.

Designers of human-AI systems must consider the challenges
involved in error detection and repair and design systems that are
resilient to failures and can adapt to changing user expectations and
behaviors. This may require new system design approaches, such
as using multiple sensors, or the development of more sophisticated
algorithms for error detection.

Finally, it is essential to understand how errors and failures in
AI systems affect user trust and confidence. Rebuilding user trust
after errors or failures occur can be challenging. Research into how
users perceive AI errors can help inform strategies for rebuilding
user trust.
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