
Infrastructure Concepts for Tag-Based Ubiquitous
Computing Applications

Kay Römer
Department of Computer Science

ETH Zurich
8092 Zurich, Switzerland

roemer@inf.ethz.ch

Thomas Schoch
Department of Computer Science

ETH Zurich
8092 Zurich, Switzerland

schoch@inf.ethz.ch

ABSTRACT
Object tagging systems such as Radio Frequency Identification
(RFID) enable the implementation of a wide variety of ubiquitous
computing applications. Up to date, most of these prototypical
applications have been implemented from scratch. Our goal
is to develop concepts and software frameworks to ease the
development of such applications. In this paper we present
our experience with with a collection of prototypical ubiquitous
computing applications based on tagged physical objects. We point
out a number of basic tasks common to this kind of application,
before presenting design concepts that we have found useful for
structuring and implementing such applications. Building upon
these concepts, we are creating software infrastructures to support
the development of tag-based ubiquitous computing applications.

1. INTRODUCTION
Object tagging systems such as Radio Frequency Identification
(RFID) are an enabling technology for many interesting ubiquitous
computing applications [5]. By attaching small tags to physical ob-
jects, these objects can be identified when brought into the vicinity
of an antenna connected to a device known as a tag reader. State-
of-the-art RFID systems such as Icode [6] allow the simultaneous
detection of multiple tags within a space of up to approximately
one cubic meter. Tags not only hold a unique ID, but also provide
a limited amount (Icode tags currently provide about 60 bytes) of
non-volatile read/write memory.

Such tagging systems enable the implementation of a wide range
of novel ubiquitous computing applications by bridging the gap be-
tween the physical world (i.e., real-world objects) and the virtual
world (i.e., application software). During the last two years we
have developed a number of such RFID-based applications in areas
like smart games, home and office automation. Our first prototype
systems were implemented from scratch, the only piece of software
they had in common being the driver software for the RFID system.
Based on our experience with these applications, we identified a
number of tasks common to this type of application, which led to
the design of concepts which we found useful for structuring and
implementing applications using tagged physical objects. Based
on those mechanisms we are designing and implementing software
infrastructure to support the development of tag-based ubiquitous
computing applications.

We begin this paper with a short overview of some of the applica-
tions we developed, go on by pointing out common tasks, and then
present pertinent infrastructure design concepts.

2. SELECTED UBICOMP APPLICATIONS
In this section we outline the type of applications we intend to sup-
port with our infrastructure by sketching some of the RFID-based
ubiquitous computing applications we have developed over the re-
cent years. Note that all the applications are based on multiple
interacting tagged physical objects. These applications will serve
as a basis for identifying common tasks that should be supported
by a generic Ubicomp infrastructure.

RFID Chef
Grocery items are equipped with RFID tags (instead of the bar-
codes that are commonly used today). When placed on the kitchen
counter, a nearby display suggests dishes that can be prepared with
the grocery items available, or shows missing ingredients. The sug-
gested dishes not only depend on the available ingredients, but also
on the preferences of the cook, who might for example prefer veg-
etarian or Asian dishes. To implement this functionality, the cook
is identified by an RFID tag attached to his wristwatch, such that
the tag enters the range of the kitchen counter RFID antenna when
grocery items are placed on the counter. [1] contains a detailed
description of the system.

Smart Playing Cards
Ordinary playing cards are equipped with RFID tags. An RFID
antenna mounted beneath a table monitors the game moves of the
players. A nearby display shows the score, the winner, and a cheat
alarm if one of the players does not follow suit, and gives hints to
beginners by assessing the players’ moves. This is implemented by
having each card remember the contexts in which it has been used
and whether the trick in question was won or lost. [2] contains a
detailed description of the system.

Smart Agenda
Agendas are equipped with RFID tags. If two or more people want
to make an appointment, they place their agendas on the “appoint-
ment table”, which is equipped with an RFID antenna. A nearby
display shows possible dates that are compatible with the schedules
of all the participants.

Smart Tool Box
Tools are equipped with RFID tags, and the tool box contains a
mobile RFID system. The tool box issues a warning if a worker
attempts to leave the building site (or a sensitive maintenance area
such as an airplane) while any tools are missing from his box. The
box also monitors how often and for how long tools have been in
use. Based on this information, tools can be replaced before they



wear out. Additionally, the tool owner can charge for tool rental
based on actual tool usage.

Smart Medicine
This application helps to avoid trouble with medication by moni-
toring medicine from production to use. For this, medicine bottles
are equipped with RFID tags. The environmental temperature of
the medicine is constantly checked in order to avoid it going bad.
Within the medicine cabinet, the bottle checks for other pharma-
ceuticals which are not compliant if taken together. A warning is
issued if such dangerous situations are detected.

3. COMMON TASKS
Based on the applications sketched in Section 2 we can highlight a
number of tasks common to these applications.

Events
In order to enable an application to react to actions in the physical
world, a link has to be established between tagged physical objects
in the real world and the application. Since RFID systems detect
presence and absence of tags in a certain physical space, this link
can be established by notifying the applications about tags entering
and leaving this space. A natural way to implement these notifica-
tions is by means of an event notification system. The system has
to support two basic events enter(X) and leave(X), which
are sent to the application when a tag with ID X enters and leaves
the detection range of the RFID system, respectively. Additionally,
applications need a way of expressing their interest in a subset of
all possible tags, since a single antenna might be used by multiple
applications at the same time.

Note that the RFID system and the application may run on different
systems and platforms, as for example in the Smart Tool Box ap-
plication, which consists of a mobile RFID system in the tool box
cooperating with a stationary system at the workshop.

Event Generation
Although from an abstract point of view the RFID system detects
entering and leaving tags, matters are complicated by the actual
low-level interface provided by the RFID system and certain appli-
cation requirements. The Icode system [6], for example, periodi-
cally scans (typically at sub-second intervals) for present tags by
sending a short RF pulse and waiting for answers from the tags.
When receiving the pulse, a tag waits a random number of discrete
time slots before answering, in order to avoid time-consuming col-
lisions with other tags sending concurrently. The maximum num-
ber of time-slots N a tag may wait before answering influences
both the time needed for a single scan and the expected number of
collisions. A smallN value results in fast scans (down to 60ms ac-
cording to [4]) but many collisions, whereas a largeN value results
in slow scans (more than one second) but few collisions.

This kind of low-level interface has several implications. First, ap-
plications are typically only interested in changes of the detected
set of tags, i.e., they want to receive enter and leave event notifica-
tions. So an appropriate software component has to convert scan
results to event notifications. However, the task of this component
is non-trivial, since the scan results are typically imperfect due to
tag collisions, i.e., not all tags are detected in every scan. The lat-
ter can result in event flickering: the fast generation of alternating
leave and enter events for a tag that is in fact present all the time.

Filters which cancel out spurious leave/enter events are required in
case of such imperfect tag detection.

Secondly, many applications require that objects be detected as fast
as possible. This is necessary if tags stay in the detection range
only for a rather short time. Even if the tags stay long enough,
long delays in tag detection can cause problems with human com-
puter interaction. The Smart Playing Cards application exemplifies
the latter, because the user expects an immediate reaction from the
system on placing a card on the table. The optimum detection per-
formance can be achieved by selecting the number of time-slotsN
to be slightly greater than the actual numberM of tags in the range
of the antenna. However,M is typically unknown. Therefore, non-
trivial algorithms are required for selecting N in order to read all
present tags in a minimal amount of time [4].

Context
Typically the application’s action when a tag enters or leaves the
antenna’s range not only depends on the identity of the tag, but also
on the presence or absence of other tags during this event – which
we call the context of the event. Consider for example the RFID
Chef application: the dishes that have to be displayed when a new
grocery item is placed on the kitchen counter not only depend on
the grocery item itself, but also on the cook. In the Smart Playing
Cards application, the action taken when a playing card enters or
leaves the antenna’s range depends on the other playing cards lying
on the table. Note that this notion of context – the presence or
absence of tagged objects – is a specific instance of a more general
concept [3].

Often applications are only interested in a certain subset of events
or events with a certain context. Consider the Smart Playing Cards
for example, where the application only wants to be informed when
the last of four players has played his card in the trick. Such a se-
lection of events can be performed at several levels, for example in
the application. However, scalability and performance of a system
can be increased by performing this selection as close as possible
to the source of events. This, however, requires a way of expressing
the event contexts applications are interested in.

Location
An RFID system provides only a very simple notion of location –
the reading range of an RFID antenna. A tagged object is at this
location if its tag can be read by the antenna. Though very simple,
this notion of location is useful for many applications, because it
serves as a means of grouping tagged objects by their location. In
the Smart Tool Box application, for example, all the tools in the
range of the tool box antenna belong to the same tool box. As in
this example, “cooperating” physical objects are often collocated.
In order to establish cooperation among collocated objects, the con-
cept of neighborhood has to be supported in an adequate way. Note
that this may be a nontrivial task, since physically collocated ob-
jects might be logically separated (e.g., by a wall), thus making
them non-neighbors.

In general, there is a need for an adequate representation of prim-
itive locations and for concepts to build higher-levels of location
information with explicit support for neighborhood relations.

Composition
Often physical objects are an aggregation of other physical objects.
In the Smart Medicine application, for example, a medicine cab-
inet contains many medicine bottles. Many applications are only



interested in manipulating composite objects, for example in order
to perform a certain manipulation on all the objects contained in a
composite object. In order to support such applications, it is nec-
essary to explicitly model “part of” relationships among objects.
Note that composition is different from the neighborhood concept,
since neighboring objects do not necessarily belong to the same
composite object.

Time
Some of the applications require a notion of time. The Smart Tool
Box, for example, has to determine the amount of real time that has
elapsed between removing a tool from the box and replacing it. The
Smart Playing Cards application knows which player played which
card by means of the temporal order of the card enter events. In
general, there is a need to time-stamp enter and leave events. In the
case of multiple tag readers, the time stamps of events originating
from different readers should be comparable, even if some of the
readers have been offline during event generation.

State and Behavior
Applications typically assign state and behavior to physical objects.
In the Smart Tool Box application the state of a physical object
(i.e. a tool) consists of its usage pattern. In the Smart Agenda
application, the state of an agenda consists of a schedule. However,
there are also stateless applications such as RFID Chef, where the
reaction or “output” of the application depends only on the tags
currently present.

The applications also differ in the way they assign behavior to phys-
ical objects. In the RFID Chef application, for example, all the gro-
cery items and the cook have a “common” behavior – the display
of a list of dishes. In the Smart Tool Box application, physical ob-
jects have a more “individual” behavior – raising an alarm if they
are missing, and calculating tool usage. Moreover, a single phys-
ical object can contribute to the behavior of more than one other
physical object. In the Smart Playing Cards application, for exam-
ple, a single card contributes to the “usage context” of all the other
playing cards on the table.

A flexible mechanism is therefore needed for assigning state and
behavior to physical objects.

History
Some applications not only react immediately to entering and leav-
ing tagged objects, but are also queried about their history later
on. Consider the Smart Tool Box example, where tools can be
queried regarding how long they were used in which tool box on
which building site. Therefore, a generic mechanism for logging
and querying the history of physical objects seems appropriate.

Communication Infrastructure
All the applications we have developed require a TCP/IP-based,
Internet-like communication infrastructure. However, there may
not always be global connectivity, as in the case of the Smart Tool
Box application. The tool box contains a mobile RFID system and
an associated computing system, which are able to operate offline.
The toolbox is only connected to the background communication
infrastructure when it is returned to the workshop. Such discon-
nected operations must also be supported.

virtual counterparts

physical objects

Figure 1: Virtual Counterparts

4. INFRASTRUCTURE CONCEPTS
Having identified a set of common tasks in Section 3, we now elab-
orate on some of the infrastructure concepts that are intended to
support these tasks.

Virtual Counterparts
The central concept of our infrastructure is the virtual counterpart
(VC). A virtual counterpart encapsulates the state and behavior of
a tagged physical object. Figure 1 shows four different types of
virtual counterparts. The simplest form appears in the playing card
VC, which is denoted as a rectangle in the figure. There is a one-
to-one mapping between tagged physical objects and their VC. A
virtual meta-counterpart, on the other hand, implements “collec-
tive” state and behavior for a group of tagged physical objects; that
is, it implements an n-to-one mapping of physical objects to state
and behavior. Virtual meta-counterparts are depicted as a rounded
rectangle, such as the grocery meta-counterpart in Figure 1.

There is a special kind of VC representing a location such as the
range of an RFID antenna. These VCs are called virtual locations
(VLs) and are depicted as diamonds. VLs offer location-dependent
functionality, such as measuring local temperature as in the Smart
Medicine application. Moreover, they play a key role in support-
ing location management as described below. Analogous to virtual
meta-counterparts, there are also virtual meta-locations, which rep-
resent a whole set of locations. Virtual meta-counterparts are de-
noted by rounded diamonds. We will use the term “counterpart” as
a genus for virtual (meta-) counterparts and locations.

Counterpart Events
As noted in Section 3, information flowing from the physical world
to virtual counterparts consists of enter and leave events caused by
tags entering and leaving the range of an RFID antenna. This link
between tagged physical objects and their virtual counterparts is
indicated by the dashed lines in Figure 1. A natural approach for
informing virtual counterparts of tag events is the use of a Virtual
Counterpart Event Service (VCES).

In general, an event notification system consists of producers gener-
ating events, consumers receiving events, and a component that for-
wards events from producers to consumers. Consumers subscribe
to the types of events they are interested in. Based on these sub-
scriptions, the VCES delivers events only to interested consumers.

In our context, producers correspond to software components that
generate enter and leave events from the RFID scans, which we



call event driver (ED). Consumers correspond to the various types
of virtual counterparts. Since multiple counterparts can subscribe
to events originating from the same physical object, we can im-
plement an n-to-m mapping between physical objects and virtual
counterparts by using the VCES.

In order to support context as described in Section 3, the event ser-
vice can be programmed by the counterparts. By means of a rule-
based program, the application can tell the system the context in
which the application is interested in events. If an event and its con-
text match a rule, then the event service generates a context event,
which contains context information as well as the information from
the triggering event.

Consider for example the Smart Playing Cards application. It only
needs to be notified of completed tricks, i.e. when all four players
have put a playing card on the table. Therefore the application
programs the event service with a rule that says “notify me of an
enter event only if there are already three cards on the table”. If
this rule is matched, the event service will generate a context event
which contains the identities of all four cards.

Counterpart Management
Counterpart management consists of three subtasks: life-cycle
management, location support, and composition.

Life-cycle management deals with the instatiation, migration, and
destruction of virtual counterparts based on the tag enter and leave
events received from the counterpart event service. If a tagged ob-
ject is detected for the first time, the counterpart associated with
that object has to be instantiated. Based on the unique tag ID con-
tained in the enter event, the code executable for the associated
counterpart is retrieved from a code repository and executed. The
counterpart state should be saved and the counterpart destroyed if
the tagged object leaves the vicinity of an RFID antenna for a long
period of time. If the object shows up later at a different location,
its counterpart must be re-instantiated using the saved state.

The life cycle of virtual locations is somewhat simpler. Each vir-
tual (meta-) location is associated with one or more RFID systems.
Upon seeing the first enter event from one of these systems, the
counterpart associated with these “locations” is instantiated and
never destroyed. Based on the unique location ID of the RFID
system contained in the enter event, the code executable for the
associated counterpart is retrieved from a code repository and exe-
cuted.

Location support is based on virtual locations by assigning each vir-
tual counterpart its respective virtual location. Virtual meta coun-
terparts allow for grouping several physical locations into a logi-
cal location. By querying their associated virtual location, virtual
counterparts can find out their potential neighbors.

Composition of virtual counterparts is supported by arranging them
into a hierarchical structure. There, the counterpart of a composite
object is the parent of the counterparts of its contained objects. Ap-
plications may use this hierarchy to perform a certain action on all
objects contained in composite object, or to automatically update
composite objects upon certain actions in contained objects.

Artifact Memory
In Section 3 we pointed out the need for persistently storing the
state information and event histories of virtual counterparts. The

Artifact Memory (AM) fulfills this task. A very limited amount of
state can be stored in tag memory1, this method has the advantage
that the saved state is available wherever a tag is. Larger amounts
of state and event history are stored in a database-like system.

Based on the stored event histories, the AM provides an interface
for queries regarding tags and their location at certain points in
time:

� find(TAG, TIME): returns the location of TAG at TIME

� with(TAG, TIME): returns the set of tags at the same location
as TAG at TIME

� look(LOC, TIME): returns the set tags at location LOC at
TIME

� history(TAG): returns a list of recent locations visited by
TAG

Using these queries, counterparts can look for other counterparts
they want to cooperate with. More generally, the AM can be used
for data mining regarding certain behavioral patterns of tagged ob-
jects.

5. CONCLUSION AND OUTLOOK
In this paper we have given a brief overview of some tag-based
ubiquitous computing applications we have developed, derived
tasks common to these applications, and presented concepts to sup-
port these tasks. Key concepts are virtual counterparts, counterpart
events, counterpart management, and artifact memory. Based on
these concepts, we are developing software infrastructure to sup-
port the development of tag-based ubiquitous computing applica-
tions.

The general goal here is to learn about appropriate concepts for a
general infrastructure for smart environments and to gain experi-
ence by implementing and applying those concepts in typical ap-
plication scenarios.

6. REFERENCES
[1] M. Langheinrich, F. Mattern, K. Römer, and H. Vogt. First

Steps Towards an Event–Based Infrastructure for Smart
Things. In Ubiquitous Computing Workshop, PACT 2000,
Philadelphia, PA, October 2000.
www.inf.ethz.ch/vs/publ/papers/firststeps.pdf.

[2] K. Römer. Smart Playing Cards - A Ubiquitous Computing
Game. In Workshop on Designing Ubiquitous Computing
Games, Ubicomp 2001, Atlanta, USA, September 2001.
www.inf.ethz.ch/vs/publ/papers/ubicomp01-smart-playing-
cards.pdf.

[3] D. Salber, A. K. Dey, and G. D. Abowd. The Context Toolkit:
Aiding the Development of Context-Enabled Applications. In
CHI 99, Pittsburgh, USA, May 1999.

[4] H. Vogt. Efficient Object Identification with Passive RFID
Tags. In Pervasive 2002, Zurich, Switzerland, August 2002.
www.inf.ethz.ch/vs/publ/papers/rfid obj.pdf.

[5] R. Want, K. Fishkin, A. Gujar, and B. Harrison. Bridging
Physical and Virtual Worlds with Electronic Tags. In ACM
Conference on Human Factors in Computing Systems (CHI
99), Pittsburgh, PA, May 1999.

[6] The Philips I–Code System. www-
us2.semiconductors.philips.com/identification/products/icode.

1We expect the amount of memory available in tags to increase
over the next few years, however.


